Metamath Proof Explorer


Theorem telfsum2

Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014) (Revised by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses telfsum.1 k = j A = B
telfsum.2 k = j + 1 A = C
telfsum.3 k = M A = D
telfsum.4 k = N + 1 A = E
telfsum.5 φ N
telfsum.6 φ N + 1 M
telfsum.7 φ k M N + 1 A
Assertion telfsum2 φ j = M N C B = E D

Proof

Step Hyp Ref Expression
1 telfsum.1 k = j A = B
2 telfsum.2 k = j + 1 A = C
3 telfsum.3 k = M A = D
4 telfsum.4 k = N + 1 A = E
5 telfsum.5 φ N
6 telfsum.6 φ N + 1 M
7 telfsum.7 φ k M N + 1 A
8 fzval3 N M N = M ..^ N + 1
9 5 8 syl φ M N = M ..^ N + 1
10 9 sumeq1d φ j = M N C B = j M ..^ N + 1 C B
11 1 2 3 4 6 7 telfsumo2 φ j M ..^ N + 1 C B = E D
12 10 11 eqtrd φ j = M N C B = E D