| Step | Hyp | Ref | Expression | 
						
							| 1 |  | telfsumo.1 |  | 
						
							| 2 |  | telfsumo.2 |  | 
						
							| 3 |  | telfsumo.3 |  | 
						
							| 4 |  | telfsumo.4 |  | 
						
							| 5 |  | telfsumo.5 |  | 
						
							| 6 |  | telfsumo.6 |  | 
						
							| 7 |  | sum0 |  | 
						
							| 8 | 3 | eleq1d |  | 
						
							| 9 | 6 | ralrimiva |  | 
						
							| 10 |  | eluzfz1 |  | 
						
							| 11 | 5 10 | syl |  | 
						
							| 12 | 8 9 11 | rspcdva |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | subidd |  | 
						
							| 15 | 7 14 | eqtr4id |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | fzo0 |  | 
						
							| 19 | 17 18 | eqtrdi |  | 
						
							| 20 | 19 | sumeq1d |  | 
						
							| 21 |  | eqeq1 |  | 
						
							| 22 | 4 | eqeq1d |  | 
						
							| 23 | 21 22 | imbi12d |  | 
						
							| 24 | 23 3 | vtoclg |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 | 5 25 | sylan |  | 
						
							| 27 | 26 | oveq2d |  | 
						
							| 28 | 15 20 27 | 3eqtr4d |  | 
						
							| 29 |  | fzofi |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 | 1 | eleq1d |  | 
						
							| 32 | 9 | adantr |  | 
						
							| 33 |  | elfzofz |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 31 32 34 | rspcdva |  | 
						
							| 36 | 2 | eleq1d |  | 
						
							| 37 |  | fzofzp1 |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 36 32 38 | rspcdva |  | 
						
							| 40 | 30 35 39 | fsumsub |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 | 1 | cbvsumv |  | 
						
							| 43 |  | eluzel2 |  | 
						
							| 44 | 5 43 | syl |  | 
						
							| 45 |  | eluzp1m1 |  | 
						
							| 46 | 44 45 | sylan |  | 
						
							| 47 |  | eluzelz |  | 
						
							| 48 | 5 47 | syl |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 |  | fzoval |  | 
						
							| 51 | 49 50 | syl |  | 
						
							| 52 |  | fzossfz |  | 
						
							| 53 | 51 52 | eqsstrrdi |  | 
						
							| 54 | 53 | sselda |  | 
						
							| 55 | 6 | adantlr |  | 
						
							| 56 | 54 55 | syldan |  | 
						
							| 57 | 46 56 3 | fsum1p |  | 
						
							| 58 | 51 | sumeq1d |  | 
						
							| 59 |  | fzoval |  | 
						
							| 60 | 49 59 | syl |  | 
						
							| 61 | 60 | sumeq1d |  | 
						
							| 62 | 61 | oveq2d |  | 
						
							| 63 | 57 58 62 | 3eqtr4d |  | 
						
							| 64 | 42 63 | eqtr3id |  | 
						
							| 65 |  | simpr |  | 
						
							| 66 |  | fzp1ss |  | 
						
							| 67 | 44 66 | syl |  | 
						
							| 68 | 67 | sselda |  | 
						
							| 69 | 68 6 | syldan |  | 
						
							| 70 | 69 | adantlr |  | 
						
							| 71 | 65 70 4 | fsumm1 |  | 
						
							| 72 |  | 1zzd |  | 
						
							| 73 | 44 | peano2zd |  | 
						
							| 74 | 72 73 48 69 2 | fsumshftm |  | 
						
							| 75 | 44 | zcnd |  | 
						
							| 76 |  | ax-1cn |  | 
						
							| 77 |  | pncan |  | 
						
							| 78 | 75 76 77 | sylancl |  | 
						
							| 79 | 78 | oveq1d |  | 
						
							| 80 | 48 50 | syl |  | 
						
							| 81 | 79 80 | eqtr4d |  | 
						
							| 82 | 81 | sumeq1d |  | 
						
							| 83 | 74 82 | eqtrd |  | 
						
							| 84 | 83 | adantr |  | 
						
							| 85 | 48 59 | syl |  | 
						
							| 86 | 85 | sumeq1d |  | 
						
							| 87 | 86 | oveq1d |  | 
						
							| 88 |  | fzofi |  | 
						
							| 89 | 88 | a1i |  | 
						
							| 90 |  | elfzofz |  | 
						
							| 91 | 90 69 | sylan2 |  | 
						
							| 92 | 89 91 | fsumcl |  | 
						
							| 93 | 4 | eleq1d |  | 
						
							| 94 |  | eluzfz2 |  | 
						
							| 95 | 5 94 | syl |  | 
						
							| 96 | 93 9 95 | rspcdva |  | 
						
							| 97 | 92 96 | addcomd |  | 
						
							| 98 | 87 97 | eqtr3d |  | 
						
							| 99 | 98 | adantr |  | 
						
							| 100 | 71 84 99 | 3eqtr3d |  | 
						
							| 101 | 64 100 | oveq12d |  | 
						
							| 102 | 12 96 92 | pnpcan2d |  | 
						
							| 103 | 102 | adantr |  | 
						
							| 104 | 41 101 103 | 3eqtrd |  | 
						
							| 105 |  | uzp1 |  | 
						
							| 106 | 5 105 | syl |  | 
						
							| 107 | 28 104 106 | mpjaodan |  |