Metamath Proof Explorer


Theorem telfsumo

Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses telfsumo.1 k = j A = B
telfsumo.2 k = j + 1 A = C
telfsumo.3 k = M A = D
telfsumo.4 k = N A = E
telfsumo.5 φ N M
telfsumo.6 φ k M N A
Assertion telfsumo φ j M ..^ N B C = D E

Proof

Step Hyp Ref Expression
1 telfsumo.1 k = j A = B
2 telfsumo.2 k = j + 1 A = C
3 telfsumo.3 k = M A = D
4 telfsumo.4 k = N A = E
5 telfsumo.5 φ N M
6 telfsumo.6 φ k M N A
7 sum0 j B C = 0
8 3 eleq1d k = M A D
9 6 ralrimiva φ k M N A
10 eluzfz1 N M M M N
11 5 10 syl φ M M N
12 8 9 11 rspcdva φ D
13 12 adantr φ N = M D
14 13 subidd φ N = M D D = 0
15 7 14 eqtr4id φ N = M j B C = D D
16 oveq2 N = M M ..^ N = M ..^ M
17 16 adantl φ N = M M ..^ N = M ..^ M
18 fzo0 M ..^ M =
19 17 18 eqtrdi φ N = M M ..^ N =
20 19 sumeq1d φ N = M j M ..^ N B C = j B C
21 eqeq1 k = N k = M N = M
22 4 eqeq1d k = N A = D E = D
23 21 22 imbi12d k = N k = M A = D N = M E = D
24 23 3 vtoclg N M N = M E = D
25 24 imp N M N = M E = D
26 5 25 sylan φ N = M E = D
27 26 oveq2d φ N = M D E = D D
28 15 20 27 3eqtr4d φ N = M j M ..^ N B C = D E
29 fzofi M ..^ N Fin
30 29 a1i φ M ..^ N Fin
31 1 eleq1d k = j A B
32 9 adantr φ j M ..^ N k M N A
33 elfzofz j M ..^ N j M N
34 33 adantl φ j M ..^ N j M N
35 31 32 34 rspcdva φ j M ..^ N B
36 2 eleq1d k = j + 1 A C
37 fzofzp1 j M ..^ N j + 1 M N
38 37 adantl φ j M ..^ N j + 1 M N
39 36 32 38 rspcdva φ j M ..^ N C
40 30 35 39 fsumsub φ j M ..^ N B C = j M ..^ N B j M ..^ N C
41 40 adantr φ N M + 1 j M ..^ N B C = j M ..^ N B j M ..^ N C
42 1 cbvsumv k M ..^ N A = j M ..^ N B
43 eluzel2 N M M
44 5 43 syl φ M
45 eluzp1m1 M N M + 1 N 1 M
46 44 45 sylan φ N M + 1 N 1 M
47 eluzelz N M N
48 5 47 syl φ N
49 48 adantr φ N M + 1 N
50 fzoval N M ..^ N = M N 1
51 49 50 syl φ N M + 1 M ..^ N = M N 1
52 fzossfz M ..^ N M N
53 51 52 eqsstrrdi φ N M + 1 M N 1 M N
54 53 sselda φ N M + 1 k M N 1 k M N
55 6 adantlr φ N M + 1 k M N A
56 54 55 syldan φ N M + 1 k M N 1 A
57 46 56 3 fsum1p φ N M + 1 k = M N 1 A = D + k = M + 1 N 1 A
58 51 sumeq1d φ N M + 1 k M ..^ N A = k = M N 1 A
59 fzoval N M + 1 ..^ N = M + 1 N 1
60 49 59 syl φ N M + 1 M + 1 ..^ N = M + 1 N 1
61 60 sumeq1d φ N M + 1 k M + 1 ..^ N A = k = M + 1 N 1 A
62 61 oveq2d φ N M + 1 D + k M + 1 ..^ N A = D + k = M + 1 N 1 A
63 57 58 62 3eqtr4d φ N M + 1 k M ..^ N A = D + k M + 1 ..^ N A
64 42 63 eqtr3id φ N M + 1 j M ..^ N B = D + k M + 1 ..^ N A
65 simpr φ N M + 1 N M + 1
66 fzp1ss M M + 1 N M N
67 44 66 syl φ M + 1 N M N
68 67 sselda φ k M + 1 N k M N
69 68 6 syldan φ k M + 1 N A
70 69 adantlr φ N M + 1 k M + 1 N A
71 65 70 4 fsumm1 φ N M + 1 k = M + 1 N A = k = M + 1 N 1 A + E
72 1zzd φ 1
73 44 peano2zd φ M + 1
74 72 73 48 69 2 fsumshftm φ k = M + 1 N A = j = M + 1 - 1 N 1 C
75 44 zcnd φ M
76 ax-1cn 1
77 pncan M 1 M + 1 - 1 = M
78 75 76 77 sylancl φ M + 1 - 1 = M
79 78 oveq1d φ M + 1 - 1 N 1 = M N 1
80 48 50 syl φ M ..^ N = M N 1
81 79 80 eqtr4d φ M + 1 - 1 N 1 = M ..^ N
82 81 sumeq1d φ j = M + 1 - 1 N 1 C = j M ..^ N C
83 74 82 eqtrd φ k = M + 1 N A = j M ..^ N C
84 83 adantr φ N M + 1 k = M + 1 N A = j M ..^ N C
85 48 59 syl φ M + 1 ..^ N = M + 1 N 1
86 85 sumeq1d φ k M + 1 ..^ N A = k = M + 1 N 1 A
87 86 oveq1d φ k M + 1 ..^ N A + E = k = M + 1 N 1 A + E
88 fzofi M + 1 ..^ N Fin
89 88 a1i φ M + 1 ..^ N Fin
90 elfzofz k M + 1 ..^ N k M + 1 N
91 90 69 sylan2 φ k M + 1 ..^ N A
92 89 91 fsumcl φ k M + 1 ..^ N A
93 4 eleq1d k = N A E
94 eluzfz2 N M N M N
95 5 94 syl φ N M N
96 93 9 95 rspcdva φ E
97 92 96 addcomd φ k M + 1 ..^ N A + E = E + k M + 1 ..^ N A
98 87 97 eqtr3d φ k = M + 1 N 1 A + E = E + k M + 1 ..^ N A
99 98 adantr φ N M + 1 k = M + 1 N 1 A + E = E + k M + 1 ..^ N A
100 71 84 99 3eqtr3d φ N M + 1 j M ..^ N C = E + k M + 1 ..^ N A
101 64 100 oveq12d φ N M + 1 j M ..^ N B j M ..^ N C = D + k M + 1 ..^ N A - E + k M + 1 ..^ N A
102 12 96 92 pnpcan2d φ D + k M + 1 ..^ N A - E + k M + 1 ..^ N A = D E
103 102 adantr φ N M + 1 D + k M + 1 ..^ N A - E + k M + 1 ..^ N A = D E
104 41 101 103 3eqtrd φ N M + 1 j M ..^ N B C = D E
105 uzp1 N M N = M N M + 1
106 5 105 syl φ N = M N M + 1
107 28 104 106 mpjaodan φ j M ..^ N B C = D E