Metamath Proof Explorer


Theorem telfsumo2

Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses telfsumo.1 k = j A = B
telfsumo.2 k = j + 1 A = C
telfsumo.3 k = M A = D
telfsumo.4 k = N A = E
telfsumo.5 φ N M
telfsumo.6 φ k M N A
Assertion telfsumo2 φ j M ..^ N C B = E D

Proof

Step Hyp Ref Expression
1 telfsumo.1 k = j A = B
2 telfsumo.2 k = j + 1 A = C
3 telfsumo.3 k = M A = D
4 telfsumo.4 k = N A = E
5 telfsumo.5 φ N M
6 telfsumo.6 φ k M N A
7 1 negeqd k = j A = B
8 2 negeqd k = j + 1 A = C
9 3 negeqd k = M A = D
10 4 negeqd k = N A = E
11 6 negcld φ k M N A
12 7 8 9 10 5 11 telfsumo φ j M ..^ N - B - C = - D - E
13 6 ralrimiva φ k M N A
14 elfzofz j M ..^ N j M N
15 1 eleq1d k = j A B
16 15 rspccva k M N A j M N B
17 13 14 16 syl2an φ j M ..^ N B
18 fzofzp1 j M ..^ N j + 1 M N
19 2 eleq1d k = j + 1 A C
20 19 rspccva k M N A j + 1 M N C
21 13 18 20 syl2an φ j M ..^ N C
22 17 21 neg2subd φ j M ..^ N - B - C = C B
23 22 sumeq2dv φ j M ..^ N - B - C = j M ..^ N C B
24 3 eleq1d k = M A D
25 eluzfz1 N M M M N
26 5 25 syl φ M M N
27 24 13 26 rspcdva φ D
28 4 eleq1d k = N A E
29 eluzfz2 N M N M N
30 5 29 syl φ N M N
31 28 13 30 rspcdva φ E
32 27 31 neg2subd φ - D - E = E D
33 12 23 32 3eqtr3d φ j M ..^ N C B = E D