Metamath Proof Explorer


Theorem telgsum

Description: Telescoping finitely supported group sum ranging over nonnegative integers, using implicit substitution. (Contributed by AV, 31-Dec-2019)

Ref Expression
Hypotheses telgsum.b B = Base G
telgsum.g φ G Abel
telgsum.m - ˙ = - G
telgsum.0 0 ˙ = 0 G
telgsum.f φ k 0 A B
telgsum.s φ S 0
telgsum.u φ k 0 S < k A = 0 ˙
telgsum.c k = i A = C
telgsum.d k = i + 1 A = D
telgsum.e k = 0 A = E
Assertion telgsum φ G i 0 C - ˙ D = E

Proof

Step Hyp Ref Expression
1 telgsum.b B = Base G
2 telgsum.g φ G Abel
3 telgsum.m - ˙ = - G
4 telgsum.0 0 ˙ = 0 G
5 telgsum.f φ k 0 A B
6 telgsum.s φ S 0
7 telgsum.u φ k 0 S < k A = 0 ˙
8 telgsum.c k = i A = C
9 telgsum.d k = i + 1 A = D
10 telgsum.e k = 0 A = E
11 simpr φ i 0 i 0
12 8 adantl φ i 0 k = i A = C
13 11 12 csbied φ i 0 i / k A = C
14 13 eqcomd φ i 0 C = i / k A
15 peano2nn0 i 0 i + 1 0
16 15 adantl φ i 0 i + 1 0
17 9 adantl φ i 0 k = i + 1 A = D
18 16 17 csbied φ i 0 i + 1 / k A = D
19 18 eqcomd φ i 0 D = i + 1 / k A
20 14 19 oveq12d φ i 0 C - ˙ D = i / k A - ˙ i + 1 / k A
21 20 mpteq2dva φ i 0 C - ˙ D = i 0 i / k A - ˙ i + 1 / k A
22 21 oveq2d φ G i 0 C - ˙ D = G i 0 i / k A - ˙ i + 1 / k A
23 1 2 3 4 5 6 7 telgsums φ G i 0 i / k A - ˙ i + 1 / k A = 0 / k A
24 c0ex 0 V
25 24 a1i φ 0 V
26 10 adantl φ k = 0 A = E
27 25 26 csbied φ 0 / k A = E
28 22 23 27 3eqtrd φ G i 0 C - ˙ D = E