Metamath Proof Explorer


Theorem tendospcanN

Description: Cancellation law for trace-preserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses tendospcan.b B = Base K
tendospcan.h H = LHyp K
tendospcan.t T = LTrn K W
tendospcan.e E = TEndo K W
tendospcan.o O = f T I B
Assertion tendospcanN K HL W H S E S O F T G T S F = S G F = G

Proof

Step Hyp Ref Expression
1 tendospcan.b B = Base K
2 tendospcan.h H = LHyp K
3 tendospcan.t T = LTrn K W
4 tendospcan.e E = TEndo K W
5 tendospcan.o O = f T I B
6 2 3 4 tendocnv K HL W H S E G T S G -1 = S G -1
7 6 3adant3l K HL W H S E F T G T S G -1 = S G -1
8 7 coeq2d K HL W H S E F T G T S F S G -1 = S F S G -1
9 simp1 K HL W H S E F T G T K HL W H
10 simp2 K HL W H S E F T G T S E
11 simp3l K HL W H S E F T G T F T
12 simp3r K HL W H S E F T G T G T
13 2 3 ltrncnv K HL W H G T G -1 T
14 9 12 13 syl2anc K HL W H S E F T G T G -1 T
15 2 3 4 tendospdi1 K HL W H S E F T G -1 T S F G -1 = S F S G -1
16 9 10 11 14 15 syl13anc K HL W H S E F T G T S F G -1 = S F S G -1
17 8 16 eqtr4d K HL W H S E F T G T S F S G -1 = S F G -1
18 17 adantr K HL W H S E F T G T F G -1 I B S F S G -1 = S F G -1
19 18 eqeq1d K HL W H S E F T G T F G -1 I B S F S G -1 = I B S F G -1 = I B
20 simpl1 K HL W H S E F T G T F G -1 I B K HL W H
21 simpl2 K HL W H S E F T G T F G -1 I B S E
22 simpl3l K HL W H S E F T G T F G -1 I B F T
23 2 3 4 tendocl K HL W H S E F T S F T
24 20 21 22 23 syl3anc K HL W H S E F T G T F G -1 I B S F T
25 simpl3r K HL W H S E F T G T F G -1 I B G T
26 2 3 4 tendocl K HL W H S E G T S G T
27 20 21 25 26 syl3anc K HL W H S E F T G T F G -1 I B S G T
28 1 2 3 ltrncoidN K HL W H S F T S G T S F S G -1 = I B S F = S G
29 20 24 27 28 syl3anc K HL W H S E F T G T F G -1 I B S F S G -1 = I B S F = S G
30 20 25 13 syl2anc K HL W H S E F T G T F G -1 I B G -1 T
31 2 3 ltrnco K HL W H F T G -1 T F G -1 T
32 20 22 30 31 syl3anc K HL W H S E F T G T F G -1 I B F G -1 T
33 simpr K HL W H S E F T G T F G -1 I B F G -1 I B
34 1 2 3 4 5 tendoid0 K HL W H S E F G -1 T F G -1 I B S F G -1 = I B S = O
35 20 21 32 33 34 syl112anc K HL W H S E F T G T F G -1 I B S F G -1 = I B S = O
36 19 29 35 3bitr3d K HL W H S E F T G T F G -1 I B S F = S G S = O
37 36 biimpd K HL W H S E F T G T F G -1 I B S F = S G S = O
38 37 impancom K HL W H S E F T G T S F = S G F G -1 I B S = O
39 38 necon1d K HL W H S E F T G T S F = S G S O F G -1 = I B
40 simpl1 K HL W H S E F T G T S F = S G K HL W H
41 simpl3l K HL W H S E F T G T S F = S G F T
42 simpl3r K HL W H S E F T G T S F = S G G T
43 1 2 3 ltrncoidN K HL W H F T G T F G -1 = I B F = G
44 40 41 42 43 syl3anc K HL W H S E F T G T S F = S G F G -1 = I B F = G
45 39 44 sylibd K HL W H S E F T G T S F = S G S O F = G
46 45 3exp1 K HL W H S E F T G T S F = S G S O F = G
47 46 com24 K HL W H S F = S G F T G T S E S O F = G
48 47 imp5a K HL W H S F = S G F T G T S E S O F = G
49 48 com24 K HL W H S E S O F T G T S F = S G F = G
50 49 3imp K HL W H S E S O F T G T S F = S G F = G
51 fveq2 F = G S F = S G
52 50 51 impbid1 K HL W H S E S O F T G T S F = S G F = G