| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfindsg.1 |
|
| 2 |
|
tfindsg.2 |
|
| 3 |
|
tfindsg.3 |
|
| 4 |
|
tfindsg.4 |
|
| 5 |
|
tfindsg.5 |
|
| 6 |
|
tfindsg.6 |
|
| 7 |
|
tfindsg.7 |
|
| 8 |
|
sseq2 |
|
| 9 |
8
|
adantl |
|
| 10 |
|
eqeq2 |
|
| 11 |
10 1
|
biimtrrdi |
|
| 12 |
11
|
imp |
|
| 13 |
9 12
|
imbi12d |
|
| 14 |
8
|
imbi1d |
|
| 15 |
|
ss0 |
|
| 16 |
15
|
con3i |
|
| 17 |
16
|
pm2.21d |
|
| 18 |
17
|
pm5.74d |
|
| 19 |
14 18
|
sylan9bbr |
|
| 20 |
13 19
|
pm2.61ian |
|
| 21 |
20
|
imbi2d |
|
| 22 |
|
sseq2 |
|
| 23 |
22 2
|
imbi12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
sseq2 |
|
| 26 |
25 3
|
imbi12d |
|
| 27 |
26
|
imbi2d |
|
| 28 |
|
sseq2 |
|
| 29 |
28 4
|
imbi12d |
|
| 30 |
29
|
imbi2d |
|
| 31 |
5
|
a1d |
|
| 32 |
|
vex |
|
| 33 |
32
|
sucex |
|
| 34 |
33
|
eqvinc |
|
| 35 |
5 1
|
imbitrrid |
|
| 36 |
3
|
biimpd |
|
| 37 |
35 36
|
sylan9r |
|
| 38 |
37
|
exlimiv |
|
| 39 |
34 38
|
sylbi |
|
| 40 |
39
|
eqcoms |
|
| 41 |
40
|
imim2i |
|
| 42 |
41
|
a1d |
|
| 43 |
42
|
com4r |
|
| 44 |
43
|
adantl |
|
| 45 |
|
df-ne |
|
| 46 |
45
|
anbi2i |
|
| 47 |
|
annim |
|
| 48 |
46 47
|
bitri |
|
| 49 |
|
onsssuc |
|
| 50 |
|
onsuc |
|
| 51 |
|
onelpss |
|
| 52 |
50 51
|
sylan2 |
|
| 53 |
49 52
|
bitrd |
|
| 54 |
53
|
ancoms |
|
| 55 |
6
|
ex |
|
| 56 |
55
|
a1ddd |
|
| 57 |
56
|
a2d |
|
| 58 |
57
|
com23 |
|
| 59 |
54 58
|
sylbird |
|
| 60 |
48 59
|
biimtrrid |
|
| 61 |
44 60
|
pm2.61d |
|
| 62 |
61
|
ex |
|
| 63 |
62
|
a2d |
|
| 64 |
|
pm2.27 |
|
| 65 |
64
|
ralimdv |
|
| 66 |
65
|
ad2antlr |
|
| 67 |
66 7
|
syld |
|
| 68 |
67
|
exp31 |
|
| 69 |
68
|
com3l |
|
| 70 |
69
|
com4t |
|
| 71 |
21 24 27 30 31 63 70
|
tfinds |
|
| 72 |
71
|
imp31 |
|