Metamath Proof Explorer


Theorem tfis2

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypotheses tfis2.1 x = y φ ψ
tfis2.2 x On y x ψ φ
Assertion tfis2 x On φ

Proof

Step Hyp Ref Expression
1 tfis2.1 x = y φ ψ
2 tfis2.2 x On y x ψ φ
3 nfv x ψ
4 3 1 2 tfis2f x On φ