Metamath Proof Explorer


Theorem tfis2f

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)

Ref Expression
Hypotheses tfis2f.1 x ψ
tfis2f.2 x = y φ ψ
tfis2f.3 x On y x ψ φ
Assertion tfis2f x On φ

Proof

Step Hyp Ref Expression
1 tfis2f.1 x ψ
2 tfis2f.2 x = y φ ψ
3 tfis2f.3 x On y x ψ φ
4 1 2 sbiev y x φ ψ
5 4 ralbii y x y x φ y x ψ
6 5 3 syl5bi x On y x y x φ φ
7 6 tfis x On φ