Metamath Proof Explorer
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994)
|
|
Ref |
Expression |
|
Hypotheses |
tfis2f.1 |
|
|
|
tfis2f.2 |
|
|
|
tfis2f.3 |
|
|
Assertion |
tfis2f |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfis2f.1 |
|
| 2 |
|
tfis2f.2 |
|
| 3 |
|
tfis2f.3 |
|
| 4 |
1 2
|
sbiev |
|
| 5 |
4
|
ralbii |
|
| 6 |
5 3
|
biimtrid |
|
| 7 |
6
|
tfis |
|