Metamath Proof Explorer


Theorem tfis3

Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003)

Ref Expression
Hypotheses tfis3.1 x = y φ ψ
tfis3.2 x = A φ χ
tfis3.3 x On y x ψ φ
Assertion tfis3 A On χ

Proof

Step Hyp Ref Expression
1 tfis3.1 x = y φ ψ
2 tfis3.2 x = A φ χ
3 tfis3.3 x On y x ψ φ
4 1 3 tfis2 x On φ
5 2 4 vtoclga A On χ