| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfisi.a |
|
| 2 |
|
tfisi.b |
|
| 3 |
|
tfisi.c |
|
| 4 |
|
tfisi.d |
|
| 5 |
|
tfisi.e |
|
| 6 |
|
tfisi.f |
|
| 7 |
|
tfisi.g |
|
| 8 |
|
ssid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqeq2 |
|
| 11 |
|
sseq1 |
|
| 12 |
11
|
anbi2d |
|
| 13 |
12
|
imbi1d |
|
| 14 |
10 13
|
imbi12d |
|
| 15 |
14
|
albidv |
|
| 16 |
6
|
eqeq1d |
|
| 17 |
4
|
imbi2d |
|
| 18 |
16 17
|
imbi12d |
|
| 19 |
18
|
cbvalvw |
|
| 20 |
15 19
|
bitrdi |
|
| 21 |
|
eqeq2 |
|
| 22 |
|
sseq1 |
|
| 23 |
22
|
anbi2d |
|
| 24 |
23
|
imbi1d |
|
| 25 |
21 24
|
imbi12d |
|
| 26 |
25
|
albidv |
|
| 27 |
|
simp3l |
|
| 28 |
|
simp2 |
|
| 29 |
|
simp1l |
|
| 30 |
28 29
|
eqeltrd |
|
| 31 |
|
simp3r |
|
| 32 |
28 31
|
eqsstrd |
|
| 33 |
|
simpl3l |
|
| 34 |
|
simpl1l |
|
| 35 |
|
simpr |
|
| 36 |
|
simpl2 |
|
| 37 |
35 36
|
eleqtrd |
|
| 38 |
|
onelss |
|
| 39 |
34 37 38
|
sylc |
|
| 40 |
|
simpl3r |
|
| 41 |
39 40
|
sstrd |
|
| 42 |
|
eqeq2 |
|
| 43 |
|
sseq1 |
|
| 44 |
43
|
anbi2d |
|
| 45 |
44
|
imbi1d |
|
| 46 |
42 45
|
imbi12d |
|
| 47 |
46
|
albidv |
|
| 48 |
|
simpl1r |
|
| 49 |
47 48 37
|
rspcdva |
|
| 50 |
|
eqidd |
|
| 51 |
|
nfcv |
|
| 52 |
|
nfcv |
|
| 53 |
51 52 6
|
csbhypf |
|
| 54 |
53
|
eqcomd |
|
| 55 |
54
|
equcoms |
|
| 56 |
55
|
eqeq1d |
|
| 57 |
|
nfv |
|
| 58 |
57 4
|
sbhypf |
|
| 59 |
58
|
bicomd |
|
| 60 |
59
|
equcoms |
|
| 61 |
60
|
imbi2d |
|
| 62 |
56 61
|
imbi12d |
|
| 63 |
62
|
spvv |
|
| 64 |
49 50 63
|
sylc |
|
| 65 |
33 41 64
|
mp2and |
|
| 66 |
65
|
ex |
|
| 67 |
66
|
alrimiv |
|
| 68 |
53
|
eleq1d |
|
| 69 |
68 58
|
imbi12d |
|
| 70 |
69
|
cbvalvw |
|
| 71 |
67 70
|
sylib |
|
| 72 |
27 30 32 71 3
|
syl121anc |
|
| 73 |
72
|
3exp |
|
| 74 |
73
|
alrimiv |
|
| 75 |
74
|
ex |
|
| 76 |
20 26 75
|
tfis3 |
|
| 77 |
2 76
|
syl |
|
| 78 |
7
|
eqeq1d |
|
| 79 |
5
|
imbi2d |
|
| 80 |
78 79
|
imbi12d |
|
| 81 |
80
|
spcgv |
|
| 82 |
1 77 81
|
sylc |
|
| 83 |
9 82
|
mpi |
|
| 84 |
83
|
expd |
|
| 85 |
84
|
pm2.43i |
|
| 86 |
8 85
|
mpi |
|