Metamath Proof Explorer


Theorem tfr1a

Description: A weak version of tfr1 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypothesis tfr.1 F = recs G
Assertion tfr1a Fun F Lim dom F

Proof

Step Hyp Ref Expression
1 tfr.1 F = recs G
2 eqid f | x On f Fn x y x f y = G f y = f | x On f Fn x y x f y = G f y
3 2 tfrlem7 Fun recs G
4 1 funeqi Fun F Fun recs G
5 3 4 mpbir Fun F
6 2 tfrlem16 Lim dom recs G
7 1 dmeqi dom F = dom recs G
8 limeq dom F = dom recs G Lim dom F Lim dom recs G
9 7 8 ax-mp Lim dom F Lim dom recs G
10 6 9 mpbir Lim dom F
11 5 10 pm3.2i Fun F Lim dom F