Metamath Proof Explorer


Theorem tfrlem7

Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994) (Revised by Mario Carneiro, 24-May-2019)

Ref Expression
Hypothesis tfrlem.1 A = f | x On f Fn x y x f y = F f y
Assertion tfrlem7 Fun recs F

Proof

Step Hyp Ref Expression
1 tfrlem.1 A = f | x On f Fn x y x f y = F f y
2 1 tfrlem6 Rel recs F
3 1 recsfval recs F = A
4 3 eleq2i x u recs F x u A
5 eluni x u A g x u g g A
6 4 5 bitri x u recs F g x u g g A
7 3 eleq2i x v recs F x v A
8 eluni x v A h x v h h A
9 7 8 bitri x v recs F h x v h h A
10 6 9 anbi12i x u recs F x v recs F g x u g g A h x v h h A
11 exdistrv g h x u g g A x v h h A g x u g g A h x v h h A
12 10 11 bitr4i x u recs F x v recs F g h x u g g A x v h h A
13 df-br x g u x u g
14 df-br x h v x v h
15 13 14 anbi12i x g u x h v x u g x v h
16 1 tfrlem5 g A h A x g u x h v u = v
17 16 impcom x g u x h v g A h A u = v
18 15 17 sylanbr x u g x v h g A h A u = v
19 18 an4s x u g g A x v h h A u = v
20 19 exlimivv g h x u g g A x v h h A u = v
21 12 20 sylbi x u recs F x v recs F u = v
22 21 ax-gen v x u recs F x v recs F u = v
23 22 gen2 x u v x u recs F x v recs F u = v
24 dffun4 Fun recs F Rel recs F x u v x u recs F x v recs F u = v
25 2 23 24 mpbir2an Fun recs F