Metamath Proof Explorer


Theorem tfrlem8

Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994) (Proof shortened by Alan Sare, 11-Mar-2008)

Ref Expression
Hypothesis tfrlem.1 A = f | x On f Fn x y x f y = F f y
Assertion tfrlem8 Ord dom recs F

Proof

Step Hyp Ref Expression
1 tfrlem.1 A = f | x On f Fn x y x f y = F f y
2 1 tfrlem3 A = g | z On g Fn z w z g w = F g w
3 2 abeq2i g A z On g Fn z w z g w = F g w
4 fndm g Fn z dom g = z
5 4 adantr g Fn z w z g w = F g w dom g = z
6 5 eleq1d g Fn z w z g w = F g w dom g On z On
7 6 biimprcd z On g Fn z w z g w = F g w dom g On
8 7 rexlimiv z On g Fn z w z g w = F g w dom g On
9 3 8 sylbi g A dom g On
10 eleq1a dom g On z = dom g z On
11 9 10 syl g A z = dom g z On
12 11 rexlimiv g A z = dom g z On
13 12 abssi z | g A z = dom g On
14 ssorduni z | g A z = dom g On Ord z | g A z = dom g
15 13 14 ax-mp Ord z | g A z = dom g
16 1 recsfval recs F = A
17 16 dmeqi dom recs F = dom A
18 dmuni dom A = g A dom g
19 vex g V
20 19 dmex dom g V
21 20 dfiun2 g A dom g = z | g A z = dom g
22 17 18 21 3eqtri dom recs F = z | g A z = dom g
23 ordeq dom recs F = z | g A z = dom g Ord dom recs F Ord z | g A z = dom g
24 22 23 ax-mp Ord dom recs F Ord z | g A z = dom g
25 15 24 mpbir Ord dom recs F