Metamath Proof Explorer


Theorem tfrlem9

Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994)

Ref Expression
Hypothesis tfrlem.1 A = f | x On f Fn x y x f y = F f y
Assertion tfrlem9 B dom recs F recs F B = F recs F B

Proof

Step Hyp Ref Expression
1 tfrlem.1 A = f | x On f Fn x y x f y = F f y
2 eldm2g B dom recs F B dom recs F z B z recs F
3 2 ibi B dom recs F z B z recs F
4 dfrecs3 recs F = f | x On f Fn x y x f y = F f y
5 4 eleq2i B z recs F B z f | x On f Fn x y x f y = F f y
6 eluniab B z f | x On f Fn x y x f y = F f y f B z f x On f Fn x y x f y = F f y
7 5 6 bitri B z recs F f B z f x On f Fn x y x f y = F f y
8 fnop f Fn x B z f B x
9 rspe x On f Fn x y x f y = F f y x On f Fn x y x f y = F f y
10 1 abeq2i f A x On f Fn x y x f y = F f y
11 elssuni f A f A
12 1 recsfval recs F = A
13 11 12 sseqtrrdi f A f recs F
14 10 13 sylbir x On f Fn x y x f y = F f y f recs F
15 9 14 syl x On f Fn x y x f y = F f y f recs F
16 fveq2 y = B f y = f B
17 reseq2 y = B f y = f B
18 17 fveq2d y = B F f y = F f B
19 16 18 eqeq12d y = B f y = F f y f B = F f B
20 19 rspcv B x y x f y = F f y f B = F f B
21 fndm f Fn x dom f = x
22 21 eleq2d f Fn x B dom f B x
23 1 tfrlem7 Fun recs F
24 funssfv Fun recs F f recs F B dom f recs F B = f B
25 23 24 mp3an1 f recs F B dom f recs F B = f B
26 25 adantrl f recs F f Fn x x On B dom f recs F B = f B
27 21 eleq1d f Fn x dom f On x On
28 onelss dom f On B dom f B dom f
29 27 28 syl6bir f Fn x x On B dom f B dom f
30 29 imp31 f Fn x x On B dom f B dom f
31 fun2ssres Fun recs F f recs F B dom f recs F B = f B
32 31 fveq2d Fun recs F f recs F B dom f F recs F B = F f B
33 23 32 mp3an1 f recs F B dom f F recs F B = F f B
34 30 33 sylan2 f recs F f Fn x x On B dom f F recs F B = F f B
35 26 34 eqeq12d f recs F f Fn x x On B dom f recs F B = F recs F B f B = F f B
36 35 exbiri f recs F f Fn x x On B dom f f B = F f B recs F B = F recs F B
37 36 com3l f Fn x x On B dom f f B = F f B f recs F recs F B = F recs F B
38 37 exp31 f Fn x x On B dom f f B = F f B f recs F recs F B = F recs F B
39 38 com34 f Fn x x On f B = F f B B dom f f recs F recs F B = F recs F B
40 39 com24 f Fn x B dom f f B = F f B x On f recs F recs F B = F recs F B
41 22 40 sylbird f Fn x B x f B = F f B x On f recs F recs F B = F recs F B
42 41 com3l B x f B = F f B f Fn x x On f recs F recs F B = F recs F B
43 20 42 syld B x y x f y = F f y f Fn x x On f recs F recs F B = F recs F B
44 43 com24 B x x On f Fn x y x f y = F f y f recs F recs F B = F recs F B
45 44 imp4d B x x On f Fn x y x f y = F f y f recs F recs F B = F recs F B
46 15 45 mpdi B x x On f Fn x y x f y = F f y recs F B = F recs F B
47 8 46 syl f Fn x B z f x On f Fn x y x f y = F f y recs F B = F recs F B
48 47 exp4d f Fn x B z f x On f Fn x y x f y = F f y recs F B = F recs F B
49 48 ex f Fn x B z f x On f Fn x y x f y = F f y recs F B = F recs F B
50 49 com4r f Fn x f Fn x B z f x On y x f y = F f y recs F B = F recs F B
51 50 pm2.43i f Fn x B z f x On y x f y = F f y recs F B = F recs F B
52 51 com3l B z f x On f Fn x y x f y = F f y recs F B = F recs F B
53 52 imp4a B z f x On f Fn x y x f y = F f y recs F B = F recs F B
54 53 rexlimdv B z f x On f Fn x y x f y = F f y recs F B = F recs F B
55 54 imp B z f x On f Fn x y x f y = F f y recs F B = F recs F B
56 55 exlimiv f B z f x On f Fn x y x f y = F f y recs F B = F recs F B
57 7 56 sylbi B z recs F recs F B = F recs F B
58 57 exlimiv z B z recs F recs F B = F recs F B
59 3 58 syl B dom recs F recs F B = F recs F B