Metamath Proof Explorer


Theorem tfrlem9a

Description: Lemma for transfinite recursion. Without using ax-rep , show that all the restrictions of recs are sets. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypothesis tfrlem.1 A = f | x On f Fn x y x f y = F f y
Assertion tfrlem9a B dom recs F recs F B V

Proof

Step Hyp Ref Expression
1 tfrlem.1 A = f | x On f Fn x y x f y = F f y
2 1 tfrlem7 Fun recs F
3 funfvop Fun recs F B dom recs F B recs F B recs F
4 2 3 mpan B dom recs F B recs F B recs F
5 1 recsfval recs F = A
6 5 eleq2i B recs F B recs F B recs F B A
7 eluni B recs F B A g B recs F B g g A
8 6 7 bitri B recs F B recs F g B recs F B g g A
9 4 8 sylib B dom recs F g B recs F B g g A
10 simprr B dom recs F B recs F B g g A g A
11 vex g V
12 1 11 tfrlem3a g A z On g Fn z a z g a = F g a
13 10 12 sylib B dom recs F B recs F B g g A z On g Fn z a z g a = F g a
14 2 a1i B dom recs F B recs F B g g A z On g Fn z Fun recs F
15 simplrr B dom recs F B recs F B g g A z On g Fn z g A
16 elssuni g A g A
17 15 16 syl B dom recs F B recs F B g g A z On g Fn z g A
18 17 5 sseqtrrdi B dom recs F B recs F B g g A z On g Fn z g recs F
19 fndm g Fn z dom g = z
20 19 ad2antll B dom recs F B recs F B g g A z On g Fn z dom g = z
21 simprl B dom recs F B recs F B g g A z On g Fn z z On
22 20 21 eqeltrd B dom recs F B recs F B g g A z On g Fn z dom g On
23 eloni dom g On Ord dom g
24 22 23 syl B dom recs F B recs F B g g A z On g Fn z Ord dom g
25 simpll B dom recs F B recs F B g g A z On g Fn z B dom recs F
26 fvexd B dom recs F B recs F B g g A z On g Fn z recs F B V
27 simplrl B dom recs F B recs F B g g A z On g Fn z B recs F B g
28 df-br B g recs F B B recs F B g
29 27 28 sylibr B dom recs F B recs F B g g A z On g Fn z B g recs F B
30 breldmg B dom recs F recs F B V B g recs F B B dom g
31 25 26 29 30 syl3anc B dom recs F B recs F B g g A z On g Fn z B dom g
32 ordelss Ord dom g B dom g B dom g
33 24 31 32 syl2anc B dom recs F B recs F B g g A z On g Fn z B dom g
34 fun2ssres Fun recs F g recs F B dom g recs F B = g B
35 14 18 33 34 syl3anc B dom recs F B recs F B g g A z On g Fn z recs F B = g B
36 11 resex g B V
37 36 a1i B dom recs F B recs F B g g A z On g Fn z g B V
38 35 37 eqeltrd B dom recs F B recs F B g g A z On g Fn z recs F B V
39 38 expr B dom recs F B recs F B g g A z On g Fn z recs F B V
40 39 adantrd B dom recs F B recs F B g g A z On g Fn z a z g a = F g a recs F B V
41 40 rexlimdva B dom recs F B recs F B g g A z On g Fn z a z g a = F g a recs F B V
42 13 41 mpd B dom recs F B recs F B g g A recs F B V
43 9 42 exlimddv B dom recs F recs F B V