Metamath Proof Explorer


Theorem tg2

Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006)

Ref Expression
Assertion tg2 A topGen B C A x B C x x A

Proof

Step Hyp Ref Expression
1 elfvdm A topGen B B dom topGen
2 eltg2b B dom topGen A topGen B y A x B y x x A
3 eleq1 y = C y x C x
4 3 anbi1d y = C y x x A C x x A
5 4 rexbidv y = C x B y x x A x B C x x A
6 5 rspccv y A x B y x x A C A x B C x x A
7 2 6 syl6bi B dom topGen A topGen B C A x B C x x A
8 1 7 mpcom A topGen B C A x B C x x A
9 8 imp A topGen B C A x B C x x A