Metamath Proof Explorer


Theorem tgbtwncom

Description: Betweenness commutes. Theorem 3.2 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwntriv2.1 φ A P
tgbtwntriv2.2 φ B P
tgbtwncom.3 φ C P
tgbtwncom.4 φ B A I C
Assertion tgbtwncom φ B C I A

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwntriv2.1 φ A P
6 tgbtwntriv2.2 φ B P
7 tgbtwncom.3 φ C P
8 tgbtwncom.4 φ B A I C
9 4 ad2antrr φ x P x B I B x C I A G 𝒢 Tarski
10 6 ad2antrr φ x P x B I B x C I A B P
11 simplr φ x P x B I B x C I A x P
12 simprl φ x P x B I B x C I A x B I B
13 1 2 3 9 10 11 12 axtgbtwnid φ x P x B I B x C I A B = x
14 simprr φ x P x B I B x C I A x C I A
15 13 14 eqeltrd φ x P x B I B x C I A B C I A
16 1 2 3 4 6 7 tgbtwntriv2 φ C B I C
17 1 2 3 4 5 6 7 6 7 8 16 axtgpasch φ x P x B I B x C I A
18 15 17 r19.29a φ B C I A