Metamath Proof Explorer


Theorem tgbtwnconn1lem1

Description: Lemma for tgbtwnconn1 . (Contributed by Thierry Arnoux, 30-Apr-2019)

Ref Expression
Hypotheses tgbtwnconn1.p P = Base G
tgbtwnconn1.i I = Itv G
tgbtwnconn1.g φ G 𝒢 Tarski
tgbtwnconn1.a φ A P
tgbtwnconn1.b φ B P
tgbtwnconn1.c φ C P
tgbtwnconn1.d φ D P
tgbtwnconn1.1 φ A B
tgbtwnconn1.2 φ B A I C
tgbtwnconn1.3 φ B A I D
tgbtwnconn1.m - ˙ = dist G
tgbtwnconn1.e φ E P
tgbtwnconn1.f φ F P
tgbtwnconn1.h φ H P
tgbtwnconn1.j φ J P
tgbtwnconn1.4 φ D A I E
tgbtwnconn1.5 φ C A I F
tgbtwnconn1.6 φ E A I H
tgbtwnconn1.7 φ F A I J
tgbtwnconn1.8 φ E - ˙ D = C - ˙ D
tgbtwnconn1.9 φ C - ˙ F = C - ˙ D
tgbtwnconn1.10 φ E - ˙ H = B - ˙ C
tgbtwnconn1.11 φ F - ˙ J = B - ˙ D
Assertion tgbtwnconn1lem1 φ H = J

Proof

Step Hyp Ref Expression
1 tgbtwnconn1.p P = Base G
2 tgbtwnconn1.i I = Itv G
3 tgbtwnconn1.g φ G 𝒢 Tarski
4 tgbtwnconn1.a φ A P
5 tgbtwnconn1.b φ B P
6 tgbtwnconn1.c φ C P
7 tgbtwnconn1.d φ D P
8 tgbtwnconn1.1 φ A B
9 tgbtwnconn1.2 φ B A I C
10 tgbtwnconn1.3 φ B A I D
11 tgbtwnconn1.m - ˙ = dist G
12 tgbtwnconn1.e φ E P
13 tgbtwnconn1.f φ F P
14 tgbtwnconn1.h φ H P
15 tgbtwnconn1.j φ J P
16 tgbtwnconn1.4 φ D A I E
17 tgbtwnconn1.5 φ C A I F
18 tgbtwnconn1.6 φ E A I H
19 tgbtwnconn1.7 φ F A I J
20 tgbtwnconn1.8 φ E - ˙ D = C - ˙ D
21 tgbtwnconn1.9 φ C - ˙ F = C - ˙ D
22 tgbtwnconn1.10 φ E - ˙ H = B - ˙ C
23 tgbtwnconn1.11 φ F - ˙ J = B - ˙ D
24 1 11 2 3 4 5 7 12 10 16 tgbtwnexch φ B A I E
25 1 11 2 3 4 5 12 14 24 18 tgbtwnexch φ B A I H
26 1 11 2 3 4 5 6 13 9 17 tgbtwnexch φ B A I F
27 1 11 2 3 4 5 13 15 26 19 tgbtwnexch φ B A I J
28 1 11 2 3 4 5 12 14 24 18 tgbtwnexch3 φ E B I H
29 1 11 2 3 4 6 13 15 17 19 tgbtwnexch φ C A I J
30 1 11 2 3 4 5 6 15 9 29 tgbtwnexch3 φ C B I J
31 1 11 2 3 5 6 15 30 tgbtwncom φ C J I B
32 1 11 2 3 4 5 7 12 10 16 tgbtwnexch3 φ D B I E
33 1 11 2 3 4 6 13 15 17 19 tgbtwnexch3 φ F C I J
34 1 11 2 3 6 13 15 33 tgbtwncom φ F J I C
35 1 11 2 3 15 13 axtgcgrrflx φ J - ˙ F = F - ˙ J
36 35 23 eqtr2d φ B - ˙ D = J - ˙ F
37 20 21 eqtr4d φ E - ˙ D = C - ˙ F
38 1 11 2 3 12 7 6 13 37 tgcgrcomlr φ D - ˙ E = F - ˙ C
39 1 11 2 3 5 7 12 15 13 6 32 34 36 38 tgcgrextend φ B - ˙ E = J - ˙ C
40 1 11 2 3 12 14 5 6 22 tgcgrcomr φ E - ˙ H = C - ˙ B
41 1 11 2 3 5 12 14 15 6 5 28 31 39 40 tgcgrextend φ B - ˙ H = J - ˙ B
42 1 11 2 3 5 15 axtgcgrrflx φ B - ˙ J = J - ˙ B
43 1 11 2 3 5 15 5 4 14 15 8 25 27 41 42 tgsegconeq φ H = J