Description: Lemma for tgbtwnconn1 . (Contributed by Thierry Arnoux, 30-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgbtwnconn1.p | ||
tgbtwnconn1.i | |||
tgbtwnconn1.g | |||
tgbtwnconn1.a | |||
tgbtwnconn1.b | |||
tgbtwnconn1.c | |||
tgbtwnconn1.d | |||
tgbtwnconn1.1 | |||
tgbtwnconn1.2 | |||
tgbtwnconn1.3 | |||
tgbtwnconn1.m | |||
tgbtwnconn1.e | |||
tgbtwnconn1.f | |||
tgbtwnconn1.h | |||
tgbtwnconn1.j | |||
tgbtwnconn1.4 | |||
tgbtwnconn1.5 | |||
tgbtwnconn1.6 | |||
tgbtwnconn1.7 | |||
tgbtwnconn1.8 | |||
tgbtwnconn1.9 | |||
tgbtwnconn1.10 | |||
tgbtwnconn1.11 | |||
Assertion | tgbtwnconn1lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn1.p | ||
2 | tgbtwnconn1.i | ||
3 | tgbtwnconn1.g | ||
4 | tgbtwnconn1.a | ||
5 | tgbtwnconn1.b | ||
6 | tgbtwnconn1.c | ||
7 | tgbtwnconn1.d | ||
8 | tgbtwnconn1.1 | ||
9 | tgbtwnconn1.2 | ||
10 | tgbtwnconn1.3 | ||
11 | tgbtwnconn1.m | ||
12 | tgbtwnconn1.e | ||
13 | tgbtwnconn1.f | ||
14 | tgbtwnconn1.h | ||
15 | tgbtwnconn1.j | ||
16 | tgbtwnconn1.4 | ||
17 | tgbtwnconn1.5 | ||
18 | tgbtwnconn1.6 | ||
19 | tgbtwnconn1.7 | ||
20 | tgbtwnconn1.8 | ||
21 | tgbtwnconn1.9 | ||
22 | tgbtwnconn1.10 | ||
23 | tgbtwnconn1.11 | ||
24 | 1 11 2 3 4 5 7 12 10 16 | tgbtwnexch | |
25 | 1 11 2 3 4 5 12 14 24 18 | tgbtwnexch | |
26 | 1 11 2 3 4 5 6 13 9 17 | tgbtwnexch | |
27 | 1 11 2 3 4 5 13 15 26 19 | tgbtwnexch | |
28 | 1 11 2 3 4 5 12 14 24 18 | tgbtwnexch3 | |
29 | 1 11 2 3 4 6 13 15 17 19 | tgbtwnexch | |
30 | 1 11 2 3 4 5 6 15 9 29 | tgbtwnexch3 | |
31 | 1 11 2 3 5 6 15 30 | tgbtwncom | |
32 | 1 11 2 3 4 5 7 12 10 16 | tgbtwnexch3 | |
33 | 1 11 2 3 4 6 13 15 17 19 | tgbtwnexch3 | |
34 | 1 11 2 3 6 13 15 33 | tgbtwncom | |
35 | 1 11 2 3 15 13 | axtgcgrrflx | |
36 | 35 23 | eqtr2d | |
37 | 20 21 | eqtr4d | |
38 | 1 11 2 3 12 7 6 13 37 | tgcgrcomlr | |
39 | 1 11 2 3 5 7 12 15 13 6 32 34 36 38 | tgcgrextend | |
40 | 1 11 2 3 12 14 5 6 22 | tgcgrcomr | |
41 | 1 11 2 3 5 12 14 15 6 5 28 31 39 40 | tgcgrextend | |
42 | 1 11 2 3 5 15 | axtgcgrrflx | |
43 | 1 11 2 3 5 15 5 4 14 15 8 25 27 41 42 | tgsegconeq |