Metamath Proof Explorer


Theorem tgbtwnconn1lem2

Description: Lemma for tgbtwnconn1 . (Contributed by Thierry Arnoux, 30-Apr-2019)

Ref Expression
Hypotheses tgbtwnconn1.p P = Base G
tgbtwnconn1.i I = Itv G
tgbtwnconn1.g φ G 𝒢 Tarski
tgbtwnconn1.a φ A P
tgbtwnconn1.b φ B P
tgbtwnconn1.c φ C P
tgbtwnconn1.d φ D P
tgbtwnconn1.1 φ A B
tgbtwnconn1.2 φ B A I C
tgbtwnconn1.3 φ B A I D
tgbtwnconn1.m - ˙ = dist G
tgbtwnconn1.e φ E P
tgbtwnconn1.f φ F P
tgbtwnconn1.h φ H P
tgbtwnconn1.j φ J P
tgbtwnconn1.4 φ D A I E
tgbtwnconn1.5 φ C A I F
tgbtwnconn1.6 φ E A I H
tgbtwnconn1.7 φ F A I J
tgbtwnconn1.8 φ E - ˙ D = C - ˙ D
tgbtwnconn1.9 φ C - ˙ F = C - ˙ D
tgbtwnconn1.10 φ E - ˙ H = B - ˙ C
tgbtwnconn1.11 φ F - ˙ J = B - ˙ D
Assertion tgbtwnconn1lem2 φ E - ˙ F = C - ˙ D

Proof

Step Hyp Ref Expression
1 tgbtwnconn1.p P = Base G
2 tgbtwnconn1.i I = Itv G
3 tgbtwnconn1.g φ G 𝒢 Tarski
4 tgbtwnconn1.a φ A P
5 tgbtwnconn1.b φ B P
6 tgbtwnconn1.c φ C P
7 tgbtwnconn1.d φ D P
8 tgbtwnconn1.1 φ A B
9 tgbtwnconn1.2 φ B A I C
10 tgbtwnconn1.3 φ B A I D
11 tgbtwnconn1.m - ˙ = dist G
12 tgbtwnconn1.e φ E P
13 tgbtwnconn1.f φ F P
14 tgbtwnconn1.h φ H P
15 tgbtwnconn1.j φ J P
16 tgbtwnconn1.4 φ D A I E
17 tgbtwnconn1.5 φ C A I F
18 tgbtwnconn1.6 φ E A I H
19 tgbtwnconn1.7 φ F A I J
20 tgbtwnconn1.8 φ E - ˙ D = C - ˙ D
21 tgbtwnconn1.9 φ C - ˙ F = C - ˙ D
22 tgbtwnconn1.10 φ E - ˙ H = B - ˙ C
23 tgbtwnconn1.11 φ F - ˙ J = B - ˙ D
24 1 11 2 3 12 13 axtgcgrrflx φ E - ˙ F = F - ˙ E
25 24 adantr φ B = C E - ˙ F = F - ˙ E
26 3 adantr φ B = C G 𝒢 Tarski
27 12 adantr φ B = C E P
28 14 adantr φ B = C H P
29 6 adantr φ B = C C P
30 22 adantr φ B = C E - ˙ H = B - ˙ C
31 simpr φ B = C B = C
32 31 oveq1d φ B = C B - ˙ C = C - ˙ C
33 30 32 eqtrd φ B = C E - ˙ H = C - ˙ C
34 1 11 2 26 27 28 29 33 axtgcgrid φ B = C E = H
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 tgbtwnconn1lem1 φ H = J
36 35 adantr φ B = C H = J
37 34 36 eqtrd φ B = C E = J
38 37 oveq2d φ B = C F - ˙ E = F - ˙ J
39 23 adantr φ B = C F - ˙ J = B - ˙ D
40 31 oveq1d φ B = C B - ˙ D = C - ˙ D
41 38 39 40 3eqtrd φ B = C F - ˙ E = C - ˙ D
42 25 41 eqtrd φ B = C E - ˙ F = C - ˙ D
43 3 adantr φ B C G 𝒢 Tarski
44 13 adantr φ B C F P
45 12 adantr φ B C E P
46 7 adantr φ B C D P
47 6 adantr φ B C C P
48 5 adantr φ B C B P
49 15 adantr φ B C J P
50 simpr φ B C B C
51 1 11 2 3 4 5 6 13 9 17 tgbtwnexch3 φ C B I F
52 51 adantr φ B C C B I F
53 35 oveq2d φ A I H = A I J
54 18 53 eleqtrd φ E A I J
55 1 11 2 3 4 7 12 15 16 54 tgbtwnexch3 φ E D I J
56 1 11 2 3 7 12 15 55 tgbtwncom φ E J I D
57 56 adantr φ B C E J I D
58 35 adantr φ B C H = J
59 58 oveq2d φ B C E - ˙ H = E - ˙ J
60 22 adantr φ B C E - ˙ H = B - ˙ C
61 1 11 2 43 45 49 axtgcgrrflx φ B C E - ˙ J = J - ˙ E
62 59 60 61 3eqtr3d φ B C B - ˙ C = J - ˙ E
63 21 20 eqtr4d φ C - ˙ F = E - ˙ D
64 63 adantr φ B C C - ˙ F = E - ˙ D
65 1 11 2 3 4 5 7 12 10 16 tgbtwnexch3 φ D B I E
66 65 adantr φ B C D B I E
67 1 11 2 3 4 6 13 15 17 19 tgbtwnexch3 φ F C I J
68 1 11 2 3 6 13 15 67 tgbtwncom φ F J I C
69 68 adantr φ B C F J I C
70 1 11 2 3 15 13 axtgcgrrflx φ J - ˙ F = F - ˙ J
71 70 23 eqtr2d φ B - ˙ D = J - ˙ F
72 71 adantr φ B C B - ˙ D = J - ˙ F
73 1 11 2 3 6 13 12 7 63 tgcgrcomlr φ F - ˙ C = D - ˙ E
74 73 adantr φ B C F - ˙ C = D - ˙ E
75 74 eqcomd φ B C D - ˙ E = F - ˙ C
76 1 11 2 43 48 46 45 49 44 47 66 69 72 75 tgcgrextend φ B C B - ˙ E = J - ˙ C
77 1 11 2 43 47 45 axtgcgrrflx φ B C C - ˙ E = E - ˙ C
78 1 11 2 43 48 47 44 49 45 46 45 47 50 52 57 62 64 76 77 axtg5seg φ B C F - ˙ E = D - ˙ C
79 1 11 2 43 44 45 46 47 78 tgcgrcomlr φ B C E - ˙ F = C - ˙ D
80 42 79 pm2.61dane φ E - ˙ F = C - ˙ D