Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn1.p |
|
2 |
|
tgbtwnconn1.i |
|
3 |
|
tgbtwnconn1.g |
|
4 |
|
tgbtwnconn1.a |
|
5 |
|
tgbtwnconn1.b |
|
6 |
|
tgbtwnconn1.c |
|
7 |
|
tgbtwnconn1.d |
|
8 |
|
tgbtwnconn1.1 |
|
9 |
|
tgbtwnconn1.2 |
|
10 |
|
tgbtwnconn1.3 |
|
11 |
|
tgbtwnconn1.m |
|
12 |
|
tgbtwnconn1.e |
|
13 |
|
tgbtwnconn1.f |
|
14 |
|
tgbtwnconn1.h |
|
15 |
|
tgbtwnconn1.j |
|
16 |
|
tgbtwnconn1.4 |
|
17 |
|
tgbtwnconn1.5 |
|
18 |
|
tgbtwnconn1.6 |
|
19 |
|
tgbtwnconn1.7 |
|
20 |
|
tgbtwnconn1.8 |
|
21 |
|
tgbtwnconn1.9 |
|
22 |
|
tgbtwnconn1.10 |
|
23 |
|
tgbtwnconn1.11 |
|
24 |
1 11 2 3 12 13
|
axtgcgrrflx |
|
25 |
24
|
adantr |
|
26 |
3
|
adantr |
|
27 |
12
|
adantr |
|
28 |
14
|
adantr |
|
29 |
6
|
adantr |
|
30 |
22
|
adantr |
|
31 |
|
simpr |
|
32 |
31
|
oveq1d |
|
33 |
30 32
|
eqtrd |
|
34 |
1 11 2 26 27 28 29 33
|
axtgcgrid |
|
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
tgbtwnconn1lem1 |
|
36 |
35
|
adantr |
|
37 |
34 36
|
eqtrd |
|
38 |
37
|
oveq2d |
|
39 |
23
|
adantr |
|
40 |
31
|
oveq1d |
|
41 |
38 39 40
|
3eqtrd |
|
42 |
25 41
|
eqtrd |
|
43 |
3
|
adantr |
|
44 |
13
|
adantr |
|
45 |
12
|
adantr |
|
46 |
7
|
adantr |
|
47 |
6
|
adantr |
|
48 |
5
|
adantr |
|
49 |
15
|
adantr |
|
50 |
|
simpr |
|
51 |
1 11 2 3 4 5 6 13 9 17
|
tgbtwnexch3 |
|
52 |
51
|
adantr |
|
53 |
35
|
oveq2d |
|
54 |
18 53
|
eleqtrd |
|
55 |
1 11 2 3 4 7 12 15 16 54
|
tgbtwnexch3 |
|
56 |
1 11 2 3 7 12 15 55
|
tgbtwncom |
|
57 |
56
|
adantr |
|
58 |
35
|
adantr |
|
59 |
58
|
oveq2d |
|
60 |
22
|
adantr |
|
61 |
1 11 2 43 45 49
|
axtgcgrrflx |
|
62 |
59 60 61
|
3eqtr3d |
|
63 |
21 20
|
eqtr4d |
|
64 |
63
|
adantr |
|
65 |
1 11 2 3 4 5 7 12 10 16
|
tgbtwnexch3 |
|
66 |
65
|
adantr |
|
67 |
1 11 2 3 4 6 13 15 17 19
|
tgbtwnexch3 |
|
68 |
1 11 2 3 6 13 15 67
|
tgbtwncom |
|
69 |
68
|
adantr |
|
70 |
1 11 2 3 15 13
|
axtgcgrrflx |
|
71 |
70 23
|
eqtr2d |
|
72 |
71
|
adantr |
|
73 |
1 11 2 3 6 13 12 7 63
|
tgcgrcomlr |
|
74 |
73
|
adantr |
|
75 |
74
|
eqcomd |
|
76 |
1 11 2 43 48 46 45 49 44 47 66 69 72 75
|
tgcgrextend |
|
77 |
1 11 2 43 47 45
|
axtgcgrrflx |
|
78 |
1 11 2 43 48 47 44 49 45 46 45 47 50 52 57 62 64 76 77
|
axtg5seg |
|
79 |
1 11 2 43 44 45 46 47 78
|
tgcgrcomlr |
|
80 |
42 79
|
pm2.61dane |
|