Metamath Proof Explorer


Theorem tgbtwnconn2

Description: Another connectivity law for betweenness. Theorem 5.2 of Schwabhauser p. 41. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p P = Base G
tgbtwnconn.i I = Itv G
tgbtwnconn.g φ G 𝒢 Tarski
tgbtwnconn.a φ A P
tgbtwnconn.b φ B P
tgbtwnconn.c φ C P
tgbtwnconn.d φ D P
tgbtwnconn2.1 φ A B
tgbtwnconn2.2 φ B A I C
tgbtwnconn2.3 φ B A I D
Assertion tgbtwnconn2 φ C B I D D B I C

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p P = Base G
2 tgbtwnconn.i I = Itv G
3 tgbtwnconn.g φ G 𝒢 Tarski
4 tgbtwnconn.a φ A P
5 tgbtwnconn.b φ B P
6 tgbtwnconn.c φ C P
7 tgbtwnconn.d φ D P
8 tgbtwnconn2.1 φ A B
9 tgbtwnconn2.2 φ B A I C
10 tgbtwnconn2.3 φ B A I D
11 eqid dist G = dist G
12 3 adantr φ C A I D G 𝒢 Tarski
13 4 adantr φ C A I D A P
14 5 adantr φ C A I D B P
15 6 adantr φ C A I D C P
16 7 adantr φ C A I D D P
17 9 adantr φ C A I D B A I C
18 simpr φ C A I D C A I D
19 1 11 2 12 13 14 15 16 17 18 tgbtwnexch3 φ C A I D C B I D
20 19 orcd φ C A I D C B I D D B I C
21 3 adantr φ D A I C G 𝒢 Tarski
22 4 adantr φ D A I C A P
23 5 adantr φ D A I C B P
24 7 adantr φ D A I C D P
25 6 adantr φ D A I C C P
26 10 adantr φ D A I C B A I D
27 simpr φ D A I C D A I C
28 1 11 2 21 22 23 24 25 26 27 tgbtwnexch3 φ D A I C D B I C
29 28 olcd φ D A I C C B I D D B I C
30 1 2 3 4 5 6 7 8 9 10 tgbtwnconn1 φ C A I D D A I C
31 20 29 30 mpjaodan φ C B I D D B I C