Metamath Proof Explorer


Theorem tgbtwnconn22

Description: Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses tgbtwnconn.p P=BaseG
tgbtwnconn.i I=ItvG
tgbtwnconn.g φG𝒢Tarski
tgbtwnconn.a φAP
tgbtwnconn.b φBP
tgbtwnconn.c φCP
tgbtwnconn.d φDP
tgbtwnconn22.e φEP
tgbtwnconn22.1 φAB
tgbtwnconn22.2 φCB
tgbtwnconn22.3 φBAIC
tgbtwnconn22.4 φBAID
tgbtwnconn22.5 φBCIE
Assertion tgbtwnconn22 φBDIE

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p P=BaseG
2 tgbtwnconn.i I=ItvG
3 tgbtwnconn.g φG𝒢Tarski
4 tgbtwnconn.a φAP
5 tgbtwnconn.b φBP
6 tgbtwnconn.c φCP
7 tgbtwnconn.d φDP
8 tgbtwnconn22.e φEP
9 tgbtwnconn22.1 φAB
10 tgbtwnconn22.2 φCB
11 tgbtwnconn22.3 φBAIC
12 tgbtwnconn22.4 φBAID
13 tgbtwnconn22.5 φBCIE
14 eqid distG=distG
15 3 adantr φCBIDG𝒢Tarski
16 7 adantr φCBIDDP
17 6 adantr φCBIDCP
18 5 adantr φCBIDBP
19 8 adantr φCBIDEP
20 10 adantr φCBIDCB
21 simpr φCBIDCBID
22 1 14 2 15 18 17 16 21 tgbtwncom φCBIDCDIB
23 13 adantr φCBIDBCIE
24 1 14 2 15 16 17 18 19 20 22 23 tgbtwnouttr2 φCBIDBDIE
25 3 adantr φDBICG𝒢Tarski
26 7 adantr φDBICDP
27 5 adantr φDBICBP
28 8 adantr φDBICEP
29 6 adantr φDBICCP
30 simpr φDBICDBIC
31 13 adantr φDBICBCIE
32 1 14 2 25 29 27 28 31 tgbtwncom φDBICBEIC
33 1 14 2 25 26 27 28 29 30 32 tgbtwnintr φDBICBDIE
34 1 2 3 4 5 6 7 9 11 12 tgbtwnconn2 φCBIDDBIC
35 24 33 34 mpjaodan φBDIE