Description: Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgbtwnconn.p | |
|
tgbtwnconn.i | |
||
tgbtwnconn.g | |
||
tgbtwnconn.a | |
||
tgbtwnconn.b | |
||
tgbtwnconn.c | |
||
tgbtwnconn.d | |
||
tgbtwnconn22.e | |
||
tgbtwnconn22.1 | |
||
tgbtwnconn22.2 | |
||
tgbtwnconn22.3 | |
||
tgbtwnconn22.4 | |
||
tgbtwnconn22.5 | |
||
Assertion | tgbtwnconn22 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn.p | |
|
2 | tgbtwnconn.i | |
|
3 | tgbtwnconn.g | |
|
4 | tgbtwnconn.a | |
|
5 | tgbtwnconn.b | |
|
6 | tgbtwnconn.c | |
|
7 | tgbtwnconn.d | |
|
8 | tgbtwnconn22.e | |
|
9 | tgbtwnconn22.1 | |
|
10 | tgbtwnconn22.2 | |
|
11 | tgbtwnconn22.3 | |
|
12 | tgbtwnconn22.4 | |
|
13 | tgbtwnconn22.5 | |
|
14 | eqid | |
|
15 | 3 | adantr | |
16 | 7 | adantr | |
17 | 6 | adantr | |
18 | 5 | adantr | |
19 | 8 | adantr | |
20 | 10 | adantr | |
21 | simpr | |
|
22 | 1 14 2 15 18 17 16 21 | tgbtwncom | |
23 | 13 | adantr | |
24 | 1 14 2 15 16 17 18 19 20 22 23 | tgbtwnouttr2 | |
25 | 3 | adantr | |
26 | 7 | adantr | |
27 | 5 | adantr | |
28 | 8 | adantr | |
29 | 6 | adantr | |
30 | simpr | |
|
31 | 13 | adantr | |
32 | 1 14 2 25 29 27 28 31 | tgbtwncom | |
33 | 1 14 2 25 26 27 28 29 30 32 | tgbtwnintr | |
34 | 1 2 3 4 5 6 7 9 11 12 | tgbtwnconn2 | |
35 | 24 33 34 | mpjaodan | |