Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn.p |
|
2 |
|
tgbtwnconn.i |
|
3 |
|
tgbtwnconn.g |
|
4 |
|
tgbtwnconn.a |
|
5 |
|
tgbtwnconn.b |
|
6 |
|
tgbtwnconn.c |
|
7 |
|
tgbtwnconn.d |
|
8 |
|
tgbtwnconn3.1 |
|
9 |
|
tgbtwnconn3.2 |
|
10 |
|
eqid |
|
11 |
3
|
adantr |
|
12 |
5
|
adantr |
|
13 |
4
|
adantr |
|
14 |
6
|
adantr |
|
15 |
|
simpr |
|
16 |
1 10 2 11 12 13 14 15
|
tgldim0itv |
|
17 |
16
|
orcd |
|
18 |
3
|
ad3antrrr |
|
19 |
|
simplr |
|
20 |
4
|
ad3antrrr |
|
21 |
5
|
ad3antrrr |
|
22 |
6
|
ad3antrrr |
|
23 |
|
simprr |
|
24 |
23
|
necomd |
|
25 |
7
|
ad3antrrr |
|
26 |
8
|
ad3antrrr |
|
27 |
|
simprl |
|
28 |
1 10 2 18 25 20 19 27
|
tgbtwncom |
|
29 |
1 10 2 18 21 20 19 25 26 28
|
tgbtwnintr |
|
30 |
1 10 2 18 21 20 19 29
|
tgbtwncom |
|
31 |
9
|
ad3antrrr |
|
32 |
1 10 2 18 20 22 25 31
|
tgbtwncom |
|
33 |
1 10 2 18 25 22 20 19 32 27
|
tgbtwnexch3 |
|
34 |
1 10 2 18 22 20 19 33
|
tgbtwncom |
|
35 |
1 2 18 19 20 21 22 24 30 34
|
tgbtwnconn2 |
|
36 |
3
|
adantr |
|
37 |
7
|
adantr |
|
38 |
4
|
adantr |
|
39 |
|
simpr |
|
40 |
1 10 2 36 37 38 39
|
tgbtwndiff |
|
41 |
35 40
|
r19.29a |
|
42 |
1 4
|
tgldimor |
|
43 |
17 41 42
|
mpjaodan |
|