Metamath Proof Explorer


Theorem tgbtwnconnln1

Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p P=BaseG
tgbtwnconn.i I=ItvG
tgbtwnconn.g φG𝒢Tarski
tgbtwnconn.a φAP
tgbtwnconn.b φBP
tgbtwnconn.c φCP
tgbtwnconn.d φDP
tgbtwnconnln1.l L=Line𝒢G
tgbtwnconnln1.1 φAB
tgbtwnconnln1.2 φBAIC
tgbtwnconnln1.3 φBAID
Assertion tgbtwnconnln1 φACLDC=D

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p P=BaseG
2 tgbtwnconn.i I=ItvG
3 tgbtwnconn.g φG𝒢Tarski
4 tgbtwnconn.a φAP
5 tgbtwnconn.b φBP
6 tgbtwnconn.c φCP
7 tgbtwnconn.d φDP
8 tgbtwnconnln1.l L=Line𝒢G
9 tgbtwnconnln1.1 φAB
10 tgbtwnconnln1.2 φBAIC
11 tgbtwnconnln1.3 φBAID
12 3 adantr φCAIDG𝒢Tarski
13 6 adantr φCAIDCP
14 7 adantr φCAIDDP
15 4 adantr φCAIDAP
16 simpr φCAIDCAID
17 1 8 2 12 13 14 15 16 btwncolg2 φCAIDACLDC=D
18 3 adantr φDAICG𝒢Tarski
19 6 adantr φDAICCP
20 7 adantr φDAICDP
21 4 adantr φDAICAP
22 eqid distG=distG
23 simpr φDAICDAIC
24 1 22 2 18 21 20 19 23 tgbtwncom φDAICDCIA
25 1 8 2 18 19 20 21 24 btwncolg3 φDAICACLDC=D
26 1 2 3 4 5 6 7 9 10 11 tgbtwnconn1 φCAIDDAIC
27 17 25 26 mpjaodan φACLDC=D