Metamath Proof Explorer


Theorem tgbtwnconnln2

Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p P=BaseG
tgbtwnconn.i I=ItvG
tgbtwnconn.g φG𝒢Tarski
tgbtwnconn.a φAP
tgbtwnconn.b φBP
tgbtwnconn.c φCP
tgbtwnconn.d φDP
tgbtwnconnln1.l L=Line𝒢G
tgbtwnconnln1.1 φAB
tgbtwnconnln1.2 φBAIC
tgbtwnconnln1.3 φBAID
Assertion tgbtwnconnln2 φBCLDC=D

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p P=BaseG
2 tgbtwnconn.i I=ItvG
3 tgbtwnconn.g φG𝒢Tarski
4 tgbtwnconn.a φAP
5 tgbtwnconn.b φBP
6 tgbtwnconn.c φCP
7 tgbtwnconn.d φDP
8 tgbtwnconnln1.l L=Line𝒢G
9 tgbtwnconnln1.1 φAB
10 tgbtwnconnln1.2 φBAIC
11 tgbtwnconnln1.3 φBAID
12 3 adantr φCBIDG𝒢Tarski
13 6 adantr φCBIDCP
14 7 adantr φCBIDDP
15 5 adantr φCBIDBP
16 simpr φCBIDCBID
17 1 8 2 12 13 14 15 16 btwncolg2 φCBIDBCLDC=D
18 3 adantr φDBICG𝒢Tarski
19 6 adantr φDBICCP
20 7 adantr φDBICDP
21 5 adantr φDBICBP
22 eqid distG=distG
23 simpr φDBICDBIC
24 1 22 2 18 21 20 19 23 tgbtwncom φDBICDCIB
25 1 8 2 18 19 20 21 24 btwncolg3 φDBICBCLDC=D
26 1 2 3 4 5 6 7 9 10 11 tgbtwnconn2 φCBIDDBIC
27 17 25 26 mpjaodan φBCLDC=D