Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgbtwnconn.p | |
|
tgbtwnconn.i | |
||
tgbtwnconn.g | |
||
tgbtwnconn.a | |
||
tgbtwnconn.b | |
||
tgbtwnconn.c | |
||
tgbtwnconn.d | |
||
tgbtwnconnln1.l | |
||
tgbtwnconnln1.1 | |
||
tgbtwnconnln1.2 | |
||
tgbtwnconnln1.3 | |
||
Assertion | tgbtwnconnln2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwnconn.p | |
|
2 | tgbtwnconn.i | |
|
3 | tgbtwnconn.g | |
|
4 | tgbtwnconn.a | |
|
5 | tgbtwnconn.b | |
|
6 | tgbtwnconn.c | |
|
7 | tgbtwnconn.d | |
|
8 | tgbtwnconnln1.l | |
|
9 | tgbtwnconnln1.1 | |
|
10 | tgbtwnconnln1.2 | |
|
11 | tgbtwnconnln1.3 | |
|
12 | 3 | adantr | |
13 | 6 | adantr | |
14 | 7 | adantr | |
15 | 5 | adantr | |
16 | simpr | |
|
17 | 1 8 2 12 13 14 15 16 | btwncolg2 | |
18 | 3 | adantr | |
19 | 6 | adantr | |
20 | 7 | adantr | |
21 | 5 | adantr | |
22 | eqid | |
|
23 | simpr | |
|
24 | 1 22 2 18 21 20 19 23 | tgbtwncom | |
25 | 1 8 2 18 19 20 21 24 | btwncolg3 | |
26 | 1 2 3 4 5 6 7 9 10 11 | tgbtwnconn2 | |
27 | 17 25 26 | mpjaodan | |