Database  
				ELEMENTARY GEOMETRY  
				Tarskian Geometry  
				Congruence  
				tgbtwnexch  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Outer transitivity law for betweenness.  Right-hand side of Theorem
         3.6 of Schwabhauser  p. 30.  (Contributed by Thierry Arnoux , 23-Mar-2019) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						tkgeom.p  
						  ⊢   P  =  Base  G          
					 
					
						 
						 
						tkgeom.d  
						  ⊢   -  ˙   =   dist  ⁡  G            
					 
					
						 
						 
						tkgeom.i  
						  ⊢   I  =    Itv   ⁡  G            
					 
					
						 
						 
						tkgeom.g  
						   ⊢   φ   →   G  ∈  𝒢  Tarski          
					 
					
						 
						 
						tgbtwnintr.1  
						   ⊢   φ   →   A  ∈  P         
					 
					
						 
						 
						tgbtwnintr.2  
						   ⊢   φ   →   B  ∈  P         
					 
					
						 
						 
						tgbtwnintr.3  
						   ⊢   φ   →   C  ∈  P         
					 
					
						 
						 
						tgbtwnintr.4  
						   ⊢   φ   →   D  ∈  P         
					 
					
						 
						 
						tgbtwnexch.1  
						   ⊢   φ   →   B  ∈  A  I  C          
					 
					
						 
						 
						tgbtwnexch.2  
						   ⊢   φ   →   C  ∈  A  I  D          
					 
				
					 
					Assertion 
					tgbtwnexch  
					   ⊢   φ   →   B  ∈  A  I  D          
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							tkgeom.p  
							   ⊢   P  =  Base  G          
						 
						
							2  
							
								
							 
							tkgeom.d  
							   ⊢   -  ˙   =   dist  ⁡  G            
						 
						
							3  
							
								
							 
							tkgeom.i  
							   ⊢   I  =    Itv   ⁡  G            
						 
						
							4  
							
								
							 
							tkgeom.g  
							    ⊢   φ   →   G  ∈  𝒢  Tarski          
						 
						
							5  
							
								
							 
							tgbtwnintr.1  
							    ⊢   φ   →   A  ∈  P         
						 
						
							6  
							
								
							 
							tgbtwnintr.2  
							    ⊢   φ   →   B  ∈  P         
						 
						
							7  
							
								
							 
							tgbtwnintr.3  
							    ⊢   φ   →   C  ∈  P         
						 
						
							8  
							
								
							 
							tgbtwnintr.4  
							    ⊢   φ   →   D  ∈  P         
						 
						
							9  
							
								
							 
							tgbtwnexch.1  
							    ⊢   φ   →   B  ∈  A  I  C          
						 
						
							10  
							
								
							 
							tgbtwnexch.2  
							    ⊢   φ   →   C  ∈  A  I  D          
						 
						
							11  
							
								1  2  3  4  5  7  8  10 
							 
							tgbtwncom  
							    ⊢   φ   →   C  ∈  D  I  A          
						 
						
							12  
							
								1  2  3  4  5  6  7  9 
							 
							tgbtwncom  
							    ⊢   φ   →   B  ∈  C  I  A          
						 
						
							13  
							
								1  2  3  4  8  7  6  5  11  12 
							 
							tgbtwnexch2  
							    ⊢   φ   →   B  ∈  D  I  A          
						 
						
							14  
							
								1  2  3  4  8  6  5  13 
							 
							tgbtwncom  
							    ⊢   φ   →   B  ∈  A  I  D