Metamath Proof Explorer


Theorem tgbtwnexch2

Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwnintr.1 φ A P
tgbtwnintr.2 φ B P
tgbtwnintr.3 φ C P
tgbtwnintr.4 φ D P
tgbtwnexch2.1 φ B A I D
tgbtwnexch2.2 φ C B I D
Assertion tgbtwnexch2 φ C A I D

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwnintr.1 φ A P
6 tgbtwnintr.2 φ B P
7 tgbtwnintr.3 φ C P
8 tgbtwnintr.4 φ D P
9 tgbtwnexch2.1 φ B A I D
10 tgbtwnexch2.2 φ C B I D
11 simpr φ B = C B = C
12 9 adantr φ B = C B A I D
13 11 12 eqeltrrd φ B = C C A I D
14 4 adantr φ B C G 𝒢 Tarski
15 5 adantr φ B C A P
16 6 adantr φ B C B P
17 7 adantr φ B C C P
18 8 adantr φ B C D P
19 simpr φ B C B C
20 10 adantr φ B C C B I D
21 9 adantr φ B C B A I D
22 1 2 3 14 17 16 15 18 20 21 tgbtwnintr φ B C B C I A
23 1 2 3 14 17 16 15 22 tgbtwncom φ B C B A I C
24 1 2 3 14 15 16 17 18 19 23 20 tgbtwnouttr2 φ B C C A I D
25 13 24 pm2.61dane φ C A I D