Metamath Proof Explorer


Theorem tgbtwnexch3

Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwnintr.1 φ A P
tgbtwnintr.2 φ B P
tgbtwnintr.3 φ C P
tgbtwnintr.4 φ D P
tgbtwnexch3.5 φ B A I C
tgbtwnexch3.6 φ C A I D
Assertion tgbtwnexch3 φ C B I D

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwnintr.1 φ A P
6 tgbtwnintr.2 φ B P
7 tgbtwnintr.3 φ C P
8 tgbtwnintr.4 φ D P
9 tgbtwnexch3.5 φ B A I C
10 tgbtwnexch3.6 φ C A I D
11 1 2 3 4 5 6 7 9 tgbtwncom φ B C I A
12 1 2 3 4 5 7 8 10 tgbtwncom φ C D I A
13 1 2 3 4 6 7 8 5 11 12 tgbtwnintr φ C B I D