Metamath Proof Explorer


Theorem tgbtwnintr

Description: Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwnintr.1 φ A P
tgbtwnintr.2 φ B P
tgbtwnintr.3 φ C P
tgbtwnintr.4 φ D P
tgbtwnintr.5 φ A B I D
tgbtwnintr.6 φ B C I D
Assertion tgbtwnintr φ B A I C

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwnintr.1 φ A P
6 tgbtwnintr.2 φ B P
7 tgbtwnintr.3 φ C P
8 tgbtwnintr.4 φ D P
9 tgbtwnintr.5 φ A B I D
10 tgbtwnintr.6 φ B C I D
11 4 ad2antrr φ x P x A I C x B I B G 𝒢 Tarski
12 6 ad2antrr φ x P x A I C x B I B B P
13 simplr φ x P x A I C x B I B x P
14 simprr φ x P x A I C x B I B x B I B
15 1 2 3 11 12 13 14 axtgbtwnid φ x P x A I C x B I B B = x
16 simprl φ x P x A I C x B I B x A I C
17 15 16 eqeltrd φ x P x A I C x B I B B A I C
18 1 2 3 4 6 7 8 5 6 9 10 axtgpasch φ x P x A I C x B I B
19 17 18 r19.29a φ B A I C