Metamath Proof Explorer


Theorem tgbtwnne

Description: Betweenness and inequality. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwntriv2.1 φ A P
tgbtwntriv2.2 φ B P
tgbtwncomb.3 φ C P
tgbtwnne.1 φ B A I C
tgbtwnne.2 φ B A
Assertion tgbtwnne φ A C

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwntriv2.1 φ A P
6 tgbtwntriv2.2 φ B P
7 tgbtwncomb.3 φ C P
8 tgbtwnne.1 φ B A I C
9 tgbtwnne.2 φ B A
10 4 adantr φ A = C G 𝒢 Tarski
11 5 adantr φ A = C A P
12 6 adantr φ A = C B P
13 8 adantr φ A = C B A I C
14 simpr φ A = C A = C
15 14 oveq2d φ A = C A I A = A I C
16 13 15 eleqtrrd φ A = C B A I A
17 1 2 3 10 11 12 16 axtgbtwnid φ A = C A = B
18 17 eqcomd φ A = C B = A
19 9 adantr φ A = C B A
20 19 neneqd φ A = C ¬ B = A
21 18 20 pm2.65da φ ¬ A = C
22 21 neqned φ A C