Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Congruence
tgbtwnouttr
Metamath Proof Explorer
Description: Outer transitivity law for betweenness. Right-hand side of Theorem
3.7 of Schwabhauser p. 30. (Contributed by Thierry Arnoux , 23-Mar-2019)
Ref
Expression
Hypotheses
tkgeom.p
⊢ P = Base G
tkgeom.d
⊢ - ˙ = dist ⁡ G
tkgeom.i
⊢ I = Itv ⁡ G
tkgeom.g
⊢ φ → G ∈ 𝒢 Tarski
tgbtwnintr.1
⊢ φ → A ∈ P
tgbtwnintr.2
⊢ φ → B ∈ P
tgbtwnintr.3
⊢ φ → C ∈ P
tgbtwnintr.4
⊢ φ → D ∈ P
tgbtwnouttr.1
⊢ φ → B ≠ C
tgbtwnouttr.2
⊢ φ → B ∈ A I C
tgbtwnouttr.3
⊢ φ → C ∈ B I D
Assertion
tgbtwnouttr
⊢ φ → B ∈ A I D
Proof
Step
Hyp
Ref
Expression
1
tkgeom.p
⊢ P = Base G
2
tkgeom.d
⊢ - ˙ = dist ⁡ G
3
tkgeom.i
⊢ I = Itv ⁡ G
4
tkgeom.g
⊢ φ → G ∈ 𝒢 Tarski
5
tgbtwnintr.1
⊢ φ → A ∈ P
6
tgbtwnintr.2
⊢ φ → B ∈ P
7
tgbtwnintr.3
⊢ φ → C ∈ P
8
tgbtwnintr.4
⊢ φ → D ∈ P
9
tgbtwnouttr.1
⊢ φ → B ≠ C
10
tgbtwnouttr.2
⊢ φ → B ∈ A I C
11
tgbtwnouttr.3
⊢ φ → C ∈ B I D
12
9
necomd
⊢ φ → C ≠ B
13
1 2 3 4 6 7 8 11
tgbtwncom
⊢ φ → C ∈ D I B
14
1 2 3 4 5 6 7 10
tgbtwncom
⊢ φ → B ∈ C I A
15
1 2 3 4 8 7 6 5 12 13 14
tgbtwnouttr2
⊢ φ → B ∈ D I A
16
1 2 3 4 8 6 5 15
tgbtwncom
⊢ φ → B ∈ A I D