Metamath Proof Explorer


Theorem tgbtwnouttr

Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwnintr.1 φ A P
tgbtwnintr.2 φ B P
tgbtwnintr.3 φ C P
tgbtwnintr.4 φ D P
tgbtwnouttr.1 φ B C
tgbtwnouttr.2 φ B A I C
tgbtwnouttr.3 φ C B I D
Assertion tgbtwnouttr φ B A I D

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwnintr.1 φ A P
6 tgbtwnintr.2 φ B P
7 tgbtwnintr.3 φ C P
8 tgbtwnintr.4 φ D P
9 tgbtwnouttr.1 φ B C
10 tgbtwnouttr.2 φ B A I C
11 tgbtwnouttr.3 φ C B I D
12 9 necomd φ C B
13 1 2 3 4 6 7 8 11 tgbtwncom φ C D I B
14 1 2 3 4 5 6 7 10 tgbtwncom φ B C I A
15 1 2 3 4 8 7 6 5 12 13 14 tgbtwnouttr2 φ B D I A
16 1 2 3 4 8 6 5 15 tgbtwncom φ B A I D