Metamath Proof Explorer


Theorem tgbtwnouttr2

Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwnintr.1 φ A P
tgbtwnintr.2 φ B P
tgbtwnintr.3 φ C P
tgbtwnintr.4 φ D P
tgbtwnouttr2.1 φ B C
tgbtwnouttr2.2 φ B A I C
tgbtwnouttr2.3 φ C B I D
Assertion tgbtwnouttr2 φ C A I D

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwnintr.1 φ A P
6 tgbtwnintr.2 φ B P
7 tgbtwnintr.3 φ C P
8 tgbtwnintr.4 φ D P
9 tgbtwnouttr2.1 φ B C
10 tgbtwnouttr2.2 φ B A I C
11 tgbtwnouttr2.3 φ C B I D
12 simprl φ x P C A I x C - ˙ x = C - ˙ D C A I x
13 4 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D G 𝒢 Tarski
14 7 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D C P
15 8 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D D P
16 6 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D B P
17 simplr φ x P C A I x C - ˙ x = C - ˙ D x P
18 9 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D B C
19 5 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D A P
20 10 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D B A I C
21 1 2 3 13 19 16 14 17 20 12 tgbtwnexch3 φ x P C A I x C - ˙ x = C - ˙ D C B I x
22 11 ad2antrr φ x P C A I x C - ˙ x = C - ˙ D C B I D
23 simprr φ x P C A I x C - ˙ x = C - ˙ D C - ˙ x = C - ˙ D
24 eqidd φ x P C A I x C - ˙ x = C - ˙ D C - ˙ D = C - ˙ D
25 1 2 3 13 14 14 15 16 17 15 18 21 22 23 24 tgsegconeq φ x P C A I x C - ˙ x = C - ˙ D x = D
26 25 oveq2d φ x P C A I x C - ˙ x = C - ˙ D A I x = A I D
27 12 26 eleqtrd φ x P C A I x C - ˙ x = C - ˙ D C A I D
28 1 2 3 4 5 7 7 8 axtgsegcon φ x P C A I x C - ˙ x = C - ˙ D
29 27 28 r19.29a φ C A I D