Metamath Proof Explorer


Theorem tgbtwnswapid

Description: If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 16-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwnswapid.1 φ A P
tgbtwnswapid.2 φ B P
tgbtwnswapid.3 φ C P
tgbtwnswapid.4 φ A B I C
tgbtwnswapid.5 φ B A I C
Assertion tgbtwnswapid φ A = B

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwnswapid.1 φ A P
6 tgbtwnswapid.2 φ B P
7 tgbtwnswapid.3 φ C P
8 tgbtwnswapid.4 φ A B I C
9 tgbtwnswapid.5 φ B A I C
10 4 ad2antrr φ x P x A I A x B I B G 𝒢 Tarski
11 5 ad2antrr φ x P x A I A x B I B A P
12 simplr φ x P x A I A x B I B x P
13 simprl φ x P x A I A x B I B x A I A
14 1 2 3 10 11 12 13 axtgbtwnid φ x P x A I A x B I B A = x
15 6 ad2antrr φ x P x A I A x B I B B P
16 simprr φ x P x A I A x B I B x B I B
17 1 2 3 10 15 12 16 axtgbtwnid φ x P x A I A x B I B B = x
18 14 17 eqtr4d φ x P x A I A x B I B A = B
19 1 2 3 4 6 5 7 5 6 8 9 axtgpasch φ x P x A I A x B I B
20 18 19 r19.29a φ A = B