Metamath Proof Explorer


Theorem tgbtwntriv1

Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwntriv2.1 φ A P
tgbtwntriv2.2 φ B P
Assertion tgbtwntriv1 φ A A I B

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwntriv2.1 φ A P
6 tgbtwntriv2.2 φ B P
7 1 2 3 4 6 5 tgbtwntriv2 φ A B I A
8 1 2 3 4 6 5 5 7 tgbtwncom φ A A I B