Metamath Proof Explorer


Theorem tgbtwntriv2

Description: Betweenness always holds for the second endpoint. Theorem 3.1 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgbtwntriv2.1 φ A P
tgbtwntriv2.2 φ B P
Assertion tgbtwntriv2 φ B A I B

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgbtwntriv2.1 φ A P
6 tgbtwntriv2.2 φ B P
7 simprl φ x P B A I x B - ˙ x = B - ˙ B B A I x
8 4 ad2antrr φ x P B - ˙ x = B - ˙ B G 𝒢 Tarski
9 6 ad2antrr φ x P B - ˙ x = B - ˙ B B P
10 simplr φ x P B - ˙ x = B - ˙ B x P
11 simpr φ x P B - ˙ x = B - ˙ B B - ˙ x = B - ˙ B
12 1 2 3 8 9 10 9 11 axtgcgrid φ x P B - ˙ x = B - ˙ B B = x
13 12 adantrl φ x P B A I x B - ˙ x = B - ˙ B B = x
14 13 oveq2d φ x P B A I x B - ˙ x = B - ˙ B A I B = A I x
15 7 14 eleqtrrd φ x P B A I x B - ˙ x = B - ˙ B B A I B
16 1 2 3 4 5 6 6 6 axtgsegcon φ x P B A I x B - ˙ x = B - ˙ B
17 15 16 r19.29a φ B A I B