Step |
Hyp |
Ref |
Expression |
1 |
|
tgcgrxfr.p |
|
2 |
|
tgcgrxfr.m |
|
3 |
|
tgcgrxfr.i |
|
4 |
|
tgcgrxfr.r |
|
5 |
|
tgcgrxfr.g |
|
6 |
|
tgbtwnxfr.a |
|
7 |
|
tgbtwnxfr.b |
|
8 |
|
tgbtwnxfr.c |
|
9 |
|
tgbtwnxfr.d |
|
10 |
|
tgbtwnxfr.e |
|
11 |
|
tgbtwnxfr.f |
|
12 |
|
tgbtwnxfr.2 |
|
13 |
|
tgbtwnxfr.1 |
|
14 |
5
|
ad2antrr |
|
15 |
|
simplr |
|
16 |
10
|
ad2antrr |
|
17 |
9
|
ad2antrr |
|
18 |
11
|
ad2antrr |
|
19 |
|
simprl |
|
20 |
|
eqidd |
|
21 |
|
eqidd |
|
22 |
6
|
ad2antrr |
|
23 |
7
|
ad2antrr |
|
24 |
8
|
ad2antrr |
|
25 |
|
simprr |
|
26 |
1 2 3 4 14 22 23 24 17 15 18 25
|
trgcgrcom |
|
27 |
12
|
ad2antrr |
|
28 |
1 2 3 4 14 17 15 18 22 23 24 26 17 16 18 27
|
cgr3tr |
|
29 |
1 2 3 4 14 17 15 18 17 16 18 28
|
trgcgrcom |
|
30 |
1 2 3 4 14 17 16 18 17 15 18 29
|
cgr3simp1 |
|
31 |
1 2 3 4 14 17 16 18 17 15 18 29
|
cgr3simp2 |
|
32 |
1 2 3 14 16 18 15 18 31
|
tgcgrcomlr |
|
33 |
1 2 3 14 17 15 18 16 17 15 18 15 19 19 20 21 30 32
|
tgifscgr |
|
34 |
1 2 3 14 15 16 15 33
|
axtgcgrid |
|
35 |
34 19
|
eqeltrrd |
|
36 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cgr3simp3 |
|
37 |
1 2 3 5 8 6 11 9 36
|
tgcgrcomlr |
|
38 |
1 2 3 4 5 6 7 8 9 11 13 37
|
tgcgrxfr |
|
39 |
35 38
|
r19.29a |
|