Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Congruence
tgcgrcomlr
Next ⟩
tgcgreqb
Metamath Proof Explorer
Ascii
Unicode
Theorem
tgcgrcomlr
Description:
Congruence commutes on both sides.
(Contributed by
Thierry Arnoux
, 23-Mar-2019)
Ref
Expression
Hypotheses
tkgeom.p
⊢
P
=
Base
G
tkgeom.d
⊢
-
˙
=
dist
⁡
G
tkgeom.i
⊢
I
=
Itv
⁡
G
tkgeom.g
⊢
φ
→
G
∈
𝒢
Tarski
tgcgrcomlr.a
⊢
φ
→
A
∈
P
tgcgrcomlr.b
⊢
φ
→
B
∈
P
tgcgrcomlr.c
⊢
φ
→
C
∈
P
tgcgrcomlr.d
⊢
φ
→
D
∈
P
tgcgrcomlr.6
⊢
φ
→
A
-
˙
B
=
C
-
˙
D
Assertion
tgcgrcomlr
⊢
φ
→
B
-
˙
A
=
D
-
˙
C
Proof
Step
Hyp
Ref
Expression
1
tkgeom.p
⊢
P
=
Base
G
2
tkgeom.d
⊢
-
˙
=
dist
⁡
G
3
tkgeom.i
⊢
I
=
Itv
⁡
G
4
tkgeom.g
⊢
φ
→
G
∈
𝒢
Tarski
5
tgcgrcomlr.a
⊢
φ
→
A
∈
P
6
tgcgrcomlr.b
⊢
φ
→
B
∈
P
7
tgcgrcomlr.c
⊢
φ
→
C
∈
P
8
tgcgrcomlr.d
⊢
φ
→
D
∈
P
9
tgcgrcomlr.6
⊢
φ
→
A
-
˙
B
=
C
-
˙
D
10
1
2
3
4
5
6
axtgcgrrflx
⊢
φ
→
A
-
˙
B
=
B
-
˙
A
11
1
2
3
4
7
8
axtgcgrrflx
⊢
φ
→
C
-
˙
D
=
D
-
˙
C
12
9
10
11
3eqtr3d
⊢
φ
→
B
-
˙
A
=
D
-
˙
C