Metamath Proof Explorer


Theorem tgcgreqb

Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgcgrcomlr.a φ A P
tgcgrcomlr.b φ B P
tgcgrcomlr.c φ C P
tgcgrcomlr.d φ D P
tgcgrcomlr.6 φ A - ˙ B = C - ˙ D
Assertion tgcgreqb φ A = B C = D

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgcgrcomlr.a φ A P
6 tgcgrcomlr.b φ B P
7 tgcgrcomlr.c φ C P
8 tgcgrcomlr.d φ D P
9 tgcgrcomlr.6 φ A - ˙ B = C - ˙ D
10 4 adantr φ A = B G 𝒢 Tarski
11 7 adantr φ A = B C P
12 8 adantr φ A = B D P
13 6 adantr φ A = B B P
14 9 adantr φ A = B A - ˙ B = C - ˙ D
15 simpr φ A = B A = B
16 15 oveq1d φ A = B A - ˙ B = B - ˙ B
17 14 16 eqtr3d φ A = B C - ˙ D = B - ˙ B
18 1 2 3 10 11 12 13 17 axtgcgrid φ A = B C = D
19 4 adantr φ C = D G 𝒢 Tarski
20 5 adantr φ C = D A P
21 6 adantr φ C = D B P
22 8 adantr φ C = D D P
23 9 adantr φ C = D A - ˙ B = C - ˙ D
24 simpr φ C = D C = D
25 24 oveq1d φ C = D C - ˙ D = D - ˙ D
26 23 25 eqtrd φ C = D A - ˙ B = D - ˙ D
27 1 2 3 19 20 21 22 26 axtgcgrid φ C = D A = B
28 18 27 impbida φ A = B C = D