Metamath Proof Explorer


Theorem tgcgrextend

Description: Link congruence over a pair of line segments. Theorem 2.11 of Schwabhauser p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgcgrextend.a φ A P
tgcgrextend.b φ B P
tgcgrextend.c φ C P
tgcgrextend.d φ D P
tgcgrextend.e φ E P
tgcgrextend.f φ F P
tgcgrextend.1 φ B A I C
tgcgrextend.2 φ E D I F
tgcgrextend.3 φ A - ˙ B = D - ˙ E
tgcgrextend.4 φ B - ˙ C = E - ˙ F
Assertion tgcgrextend φ A - ˙ C = D - ˙ F

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgcgrextend.a φ A P
6 tgcgrextend.b φ B P
7 tgcgrextend.c φ C P
8 tgcgrextend.d φ D P
9 tgcgrextend.e φ E P
10 tgcgrextend.f φ F P
11 tgcgrextend.1 φ B A I C
12 tgcgrextend.2 φ E D I F
13 tgcgrextend.3 φ A - ˙ B = D - ˙ E
14 tgcgrextend.4 φ B - ˙ C = E - ˙ F
15 14 adantr φ A = B B - ˙ C = E - ˙ F
16 simpr φ A = B A = B
17 16 oveq1d φ A = B A - ˙ C = B - ˙ C
18 4 adantr φ A = B G 𝒢 Tarski
19 5 adantr φ A = B A P
20 6 adantr φ A = B B P
21 8 adantr φ A = B D P
22 9 adantr φ A = B E P
23 13 adantr φ A = B A - ˙ B = D - ˙ E
24 1 2 3 18 19 20 21 22 23 16 tgcgreq φ A = B D = E
25 24 oveq1d φ A = B D - ˙ F = E - ˙ F
26 15 17 25 3eqtr4d φ A = B A - ˙ C = D - ˙ F
27 4 adantr φ A B G 𝒢 Tarski
28 7 adantr φ A B C P
29 5 adantr φ A B A P
30 10 adantr φ A B F P
31 8 adantr φ A B D P
32 6 adantr φ A B B P
33 9 adantr φ A B E P
34 simpr φ A B A B
35 11 adantr φ A B B A I C
36 12 adantr φ A B E D I F
37 13 adantr φ A B A - ˙ B = D - ˙ E
38 14 adantr φ A B B - ˙ C = E - ˙ F
39 1 2 3 27 29 31 tgcgrtriv φ A B A - ˙ A = D - ˙ D
40 1 2 3 27 29 32 31 33 37 tgcgrcomlr φ A B B - ˙ A = E - ˙ D
41 1 2 3 27 29 32 28 31 33 30 29 31 34 35 36 37 38 39 40 axtg5seg φ A B C - ˙ A = F - ˙ D
42 1 2 3 27 28 29 30 31 41 tgcgrcomlr φ A B A - ˙ C = D - ˙ F
43 26 42 pm2.61dane φ A - ˙ C = D - ˙ F