Step |
Hyp |
Ref |
Expression |
1 |
|
tkgeom.p |
|
2 |
|
tkgeom.d |
|
3 |
|
tkgeom.i |
|
4 |
|
tkgeom.g |
|
5 |
|
tgcgrextend.a |
|
6 |
|
tgcgrextend.b |
|
7 |
|
tgcgrextend.c |
|
8 |
|
tgcgrextend.d |
|
9 |
|
tgcgrextend.e |
|
10 |
|
tgcgrextend.f |
|
11 |
|
tgcgrextend.1 |
|
12 |
|
tgcgrextend.2 |
|
13 |
|
tgcgrextend.3 |
|
14 |
|
tgcgrextend.4 |
|
15 |
14
|
adantr |
|
16 |
|
simpr |
|
17 |
16
|
oveq1d |
|
18 |
4
|
adantr |
|
19 |
5
|
adantr |
|
20 |
6
|
adantr |
|
21 |
8
|
adantr |
|
22 |
9
|
adantr |
|
23 |
13
|
adantr |
|
24 |
1 2 3 18 19 20 21 22 23 16
|
tgcgreq |
|
25 |
24
|
oveq1d |
|
26 |
15 17 25
|
3eqtr4d |
|
27 |
4
|
adantr |
|
28 |
7
|
adantr |
|
29 |
5
|
adantr |
|
30 |
10
|
adantr |
|
31 |
8
|
adantr |
|
32 |
6
|
adantr |
|
33 |
9
|
adantr |
|
34 |
|
simpr |
|
35 |
11
|
adantr |
|
36 |
12
|
adantr |
|
37 |
13
|
adantr |
|
38 |
14
|
adantr |
|
39 |
1 2 3 27 29 31
|
tgcgrtriv |
|
40 |
1 2 3 27 29 32 31 33 37
|
tgcgrcomlr |
|
41 |
1 2 3 27 29 32 28 31 33 30 29 31 34 35 36 37 38 39 40
|
axtg5seg |
|
42 |
1 2 3 27 28 29 30 31 41
|
tgcgrcomlr |
|
43 |
26 42
|
pm2.61dane |
|