Metamath Proof Explorer


Theorem tgcgrneq

Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgcgrcomlr.a φ A P
tgcgrcomlr.b φ B P
tgcgrcomlr.c φ C P
tgcgrcomlr.d φ D P
tgcgrcomlr.6 φ A - ˙ B = C - ˙ D
tgcgrneq.1 φ A B
Assertion tgcgrneq φ C D

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgcgrcomlr.a φ A P
6 tgcgrcomlr.b φ B P
7 tgcgrcomlr.c φ C P
8 tgcgrcomlr.d φ D P
9 tgcgrcomlr.6 φ A - ˙ B = C - ˙ D
10 tgcgrneq.1 φ A B
11 1 2 3 4 5 6 7 8 9 tgcgreqb φ A = B C = D
12 11 necon3bid φ A B C D
13 10 12 mpbid φ C D