Metamath Proof Explorer
Description: Congruence and equality. (Contributed by Thierry Arnoux, 27-Aug-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tkgeom.p |
|
|
|
tkgeom.d |
|
|
|
tkgeom.i |
|
|
|
tkgeom.g |
|
|
|
tgcgrcomlr.a |
|
|
|
tgcgrcomlr.b |
|
|
|
tgcgrcomlr.c |
|
|
|
tgcgrcomlr.d |
|
|
|
tgcgrcomlr.6 |
|
|
|
tgcgrneq.1 |
|
|
Assertion |
tgcgrneq |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
|
| 2 |
|
tkgeom.d |
|
| 3 |
|
tkgeom.i |
|
| 4 |
|
tkgeom.g |
|
| 5 |
|
tgcgrcomlr.a |
|
| 6 |
|
tgcgrcomlr.b |
|
| 7 |
|
tgcgrcomlr.c |
|
| 8 |
|
tgcgrcomlr.d |
|
| 9 |
|
tgcgrcomlr.6 |
|
| 10 |
|
tgcgrneq.1 |
|
| 11 |
1 2 3 4 5 6 7 8 9
|
tgcgreqb |
|
| 12 |
11
|
necon3bid |
|
| 13 |
10 12
|
mpbid |
|