Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Congruence
tgcgrneq
Next ⟩
tgcgrtriv
Metamath Proof Explorer
Ascii
Unicode
Theorem
tgcgrneq
Description:
Congruence and equality.
(Contributed by
Thierry Arnoux
, 27-Aug-2019)
Ref
Expression
Hypotheses
tkgeom.p
⊢
P
=
Base
G
tkgeom.d
⊢
-
˙
=
dist
⁡
G
tkgeom.i
⊢
I
=
Itv
⁡
G
tkgeom.g
⊢
φ
→
G
∈
𝒢
Tarski
tgcgrcomlr.a
⊢
φ
→
A
∈
P
tgcgrcomlr.b
⊢
φ
→
B
∈
P
tgcgrcomlr.c
⊢
φ
→
C
∈
P
tgcgrcomlr.d
⊢
φ
→
D
∈
P
tgcgrcomlr.6
⊢
φ
→
A
-
˙
B
=
C
-
˙
D
tgcgrneq.1
⊢
φ
→
A
≠
B
Assertion
tgcgrneq
⊢
φ
→
C
≠
D
Proof
Step
Hyp
Ref
Expression
1
tkgeom.p
⊢
P
=
Base
G
2
tkgeom.d
⊢
-
˙
=
dist
⁡
G
3
tkgeom.i
⊢
I
=
Itv
⁡
G
4
tkgeom.g
⊢
φ
→
G
∈
𝒢
Tarski
5
tgcgrcomlr.a
⊢
φ
→
A
∈
P
6
tgcgrcomlr.b
⊢
φ
→
B
∈
P
7
tgcgrcomlr.c
⊢
φ
→
C
∈
P
8
tgcgrcomlr.d
⊢
φ
→
D
∈
P
9
tgcgrcomlr.6
⊢
φ
→
A
-
˙
B
=
C
-
˙
D
10
tgcgrneq.1
⊢
φ
→
A
≠
B
11
1
2
3
4
5
6
7
8
9
tgcgreqb
⊢
φ
→
A
=
B
↔
C
=
D
12
11
necon3bid
⊢
φ
→
A
≠
B
↔
C
≠
D
13
10
12
mpbid
⊢
φ
→
C
≠
D