Metamath Proof Explorer


Theorem tgcgrsub

Description: Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of Schwabhauser p. 35. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tgbtwncgr.p P = Base G
tgbtwncgr.m - ˙ = dist G
tgbtwncgr.i I = Itv G
tgbtwncgr.g φ G 𝒢 Tarski
tgbtwncgr.a φ A P
tgbtwncgr.b φ B P
tgbtwncgr.c φ C P
tgbtwncgr.d φ D P
tgcgrsub.e φ E P
tgcgrsub.f φ F P
tgcgrsub.1 φ B A I C
tgcgrsub.2 φ E D I F
tgcgrsub.3 φ A - ˙ C = D - ˙ F
tgcgrsub.4 φ B - ˙ C = E - ˙ F
Assertion tgcgrsub φ A - ˙ B = D - ˙ E

Proof

Step Hyp Ref Expression
1 tgbtwncgr.p P = Base G
2 tgbtwncgr.m - ˙ = dist G
3 tgbtwncgr.i I = Itv G
4 tgbtwncgr.g φ G 𝒢 Tarski
5 tgbtwncgr.a φ A P
6 tgbtwncgr.b φ B P
7 tgbtwncgr.c φ C P
8 tgbtwncgr.d φ D P
9 tgcgrsub.e φ E P
10 tgcgrsub.f φ F P
11 tgcgrsub.1 φ B A I C
12 tgcgrsub.2 φ E D I F
13 tgcgrsub.3 φ A - ˙ C = D - ˙ F
14 tgcgrsub.4 φ B - ˙ C = E - ˙ F
15 1 2 3 4 5 8 tgcgrtriv φ A - ˙ A = D - ˙ D
16 1 2 3 4 5 7 8 10 13 tgcgrcomlr φ C - ˙ A = F - ˙ D
17 1 2 3 4 5 6 7 5 8 9 10 8 11 12 13 14 15 16 tgifscgr φ B - ˙ A = E - ˙ D
18 1 2 3 4 6 5 9 8 17 tgcgrcomlr φ A - ˙ B = D - ˙ E