Metamath Proof Explorer


Theorem tgcgrsub2

Description: Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses legval.p P = Base G
legval.d - ˙ = dist G
legval.i I = Itv G
legval.l ˙ = 𝒢 G
legval.g φ G 𝒢 Tarski
legid.a φ A P
legid.b φ B P
legtrd.c φ C P
legtrd.d φ D P
tgcgrsub2.d φ D P
tgcgrsub2.e φ E P
tgcgrsub2.f φ F P
tgcgrsub2.1 φ B A I C C A I B
tgcgrsub2.2 φ E D I F F D I E
tgcgrsub2.3 φ A - ˙ B = D - ˙ E
tgcgrsub2.4 φ A - ˙ C = D - ˙ F
Assertion tgcgrsub2 φ B - ˙ C = E - ˙ F

Proof

Step Hyp Ref Expression
1 legval.p P = Base G
2 legval.d - ˙ = dist G
3 legval.i I = Itv G
4 legval.l ˙ = 𝒢 G
5 legval.g φ G 𝒢 Tarski
6 legid.a φ A P
7 legid.b φ B P
8 legtrd.c φ C P
9 legtrd.d φ D P
10 tgcgrsub2.d φ D P
11 tgcgrsub2.e φ E P
12 tgcgrsub2.f φ F P
13 tgcgrsub2.1 φ B A I C C A I B
14 tgcgrsub2.2 φ E D I F F D I E
15 tgcgrsub2.3 φ A - ˙ B = D - ˙ E
16 tgcgrsub2.4 φ A - ˙ C = D - ˙ F
17 5 adantr φ B A I C G 𝒢 Tarski
18 8 adantr φ B A I C C P
19 7 adantr φ B A I C B P
20 12 adantr φ B A I C F P
21 11 adantr φ B A I C E P
22 6 adantr φ B A I C A P
23 9 adantr φ B A I C D P
24 simpr φ B A I C B A I C
25 1 2 3 17 22 19 18 24 tgbtwncom φ B A I C B C I A
26 14 adantr φ B A I C E D I F F D I E
27 1 2 3 4 17 22 19 18 24 btwnleg φ B A I C A - ˙ B ˙ A - ˙ C
28 15 adantr φ B A I C A - ˙ B = D - ˙ E
29 16 adantr φ B A I C A - ˙ C = D - ˙ F
30 27 28 29 3brtr3d φ B A I C D - ˙ E ˙ D - ˙ F
31 1 2 3 4 17 21 20 23 23 26 30 legbtwn φ B A I C E D I F
32 1 2 3 17 23 21 20 31 tgbtwncom φ B A I C E F I D
33 1 2 3 5 6 8 9 12 16 tgcgrcomlr φ C - ˙ A = F - ˙ D
34 33 adantr φ B A I C C - ˙ A = F - ˙ D
35 1 2 3 5 6 7 9 11 15 tgcgrcomlr φ B - ˙ A = E - ˙ D
36 35 adantr φ B A I C B - ˙ A = E - ˙ D
37 1 2 3 17 18 19 22 20 21 23 25 32 34 36 tgcgrsub φ B A I C C - ˙ B = F - ˙ E
38 1 2 3 17 18 19 20 21 37 tgcgrcomlr φ B A I C B - ˙ C = E - ˙ F
39 5 adantr φ C A I B G 𝒢 Tarski
40 7 adantr φ C A I B B P
41 8 adantr φ C A I B C P
42 6 adantr φ C A I B A P
43 11 adantr φ C A I B E P
44 12 adantr φ C A I B F P
45 9 adantr φ C A I B D P
46 simpr φ C A I B C A I B
47 1 2 3 39 42 41 40 46 tgbtwncom φ C A I B C B I A
48 14 orcomd φ F D I E E D I F
49 48 adantr φ C A I B F D I E E D I F
50 1 2 3 4 39 42 41 40 46 btwnleg φ C A I B A - ˙ C ˙ A - ˙ B
51 16 adantr φ C A I B A - ˙ C = D - ˙ F
52 15 adantr φ C A I B A - ˙ B = D - ˙ E
53 50 51 52 3brtr3d φ C A I B D - ˙ F ˙ D - ˙ E
54 1 2 3 4 39 44 43 45 45 49 53 legbtwn φ C A I B F D I E
55 1 2 3 39 45 44 43 54 tgbtwncom φ C A I B F E I D
56 35 adantr φ C A I B B - ˙ A = E - ˙ D
57 33 adantr φ C A I B C - ˙ A = F - ˙ D
58 1 2 3 39 40 41 42 43 44 45 47 55 56 57 tgcgrsub φ C A I B B - ˙ C = E - ˙ F
59 38 58 13 mpjaodan φ B - ˙ C = E - ˙ F