Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|
2 |
|
legval.d |
|
3 |
|
legval.i |
|
4 |
|
legval.l |
|
5 |
|
legval.g |
|
6 |
|
legid.a |
|
7 |
|
legid.b |
|
8 |
|
legtrd.c |
|
9 |
|
legtrd.d |
|
10 |
|
tgcgrsub2.d |
|
11 |
|
tgcgrsub2.e |
|
12 |
|
tgcgrsub2.f |
|
13 |
|
tgcgrsub2.1 |
|
14 |
|
tgcgrsub2.2 |
|
15 |
|
tgcgrsub2.3 |
|
16 |
|
tgcgrsub2.4 |
|
17 |
5
|
adantr |
|
18 |
8
|
adantr |
|
19 |
7
|
adantr |
|
20 |
12
|
adantr |
|
21 |
11
|
adantr |
|
22 |
6
|
adantr |
|
23 |
9
|
adantr |
|
24 |
|
simpr |
|
25 |
1 2 3 17 22 19 18 24
|
tgbtwncom |
|
26 |
14
|
adantr |
|
27 |
1 2 3 4 17 22 19 18 24
|
btwnleg |
|
28 |
15
|
adantr |
|
29 |
16
|
adantr |
|
30 |
27 28 29
|
3brtr3d |
|
31 |
1 2 3 4 17 21 20 23 23 26 30
|
legbtwn |
|
32 |
1 2 3 17 23 21 20 31
|
tgbtwncom |
|
33 |
1 2 3 5 6 8 9 12 16
|
tgcgrcomlr |
|
34 |
33
|
adantr |
|
35 |
1 2 3 5 6 7 9 11 15
|
tgcgrcomlr |
|
36 |
35
|
adantr |
|
37 |
1 2 3 17 18 19 22 20 21 23 25 32 34 36
|
tgcgrsub |
|
38 |
1 2 3 17 18 19 20 21 37
|
tgcgrcomlr |
|
39 |
5
|
adantr |
|
40 |
7
|
adantr |
|
41 |
8
|
adantr |
|
42 |
6
|
adantr |
|
43 |
11
|
adantr |
|
44 |
12
|
adantr |
|
45 |
9
|
adantr |
|
46 |
|
simpr |
|
47 |
1 2 3 39 42 41 40 46
|
tgbtwncom |
|
48 |
14
|
orcomd |
|
49 |
48
|
adantr |
|
50 |
1 2 3 4 39 42 41 40 46
|
btwnleg |
|
51 |
16
|
adantr |
|
52 |
15
|
adantr |
|
53 |
50 51 52
|
3brtr3d |
|
54 |
1 2 3 4 39 44 43 45 45 49 53
|
legbtwn |
|
55 |
1 2 3 39 45 44 43 54
|
tgbtwncom |
|
56 |
35
|
adantr |
|
57 |
33
|
adantr |
|
58 |
1 2 3 39 40 41 42 43 44 45 47 55 56 57
|
tgcgrsub |
|
59 |
38 58 13
|
mpjaodan |
|