Metamath Proof Explorer


Theorem tgcgrtriv

Description: Degenerate segments are congruent. Theorem 2.8 of Schwabhauser p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tkgeom.p P = Base G
tkgeom.d - ˙ = dist G
tkgeom.i I = Itv G
tkgeom.g φ G 𝒢 Tarski
tgcgrtriv.1 φ A P
tgcgrtriv.2 φ B P
Assertion tgcgrtriv φ A - ˙ A = B - ˙ B

Proof

Step Hyp Ref Expression
1 tkgeom.p P = Base G
2 tkgeom.d - ˙ = dist G
3 tkgeom.i I = Itv G
4 tkgeom.g φ G 𝒢 Tarski
5 tgcgrtriv.1 φ A P
6 tgcgrtriv.2 φ B P
7 4 ad2antrr φ x P A B I x A - ˙ x = B - ˙ B G 𝒢 Tarski
8 5 ad2antrr φ x P A B I x A - ˙ x = B - ˙ B A P
9 simplr φ x P A B I x A - ˙ x = B - ˙ B x P
10 6 ad2antrr φ x P A B I x A - ˙ x = B - ˙ B B P
11 simprr φ x P A B I x A - ˙ x = B - ˙ B A - ˙ x = B - ˙ B
12 1 2 3 7 8 9 10 11 axtgcgrid φ x P A B I x A - ˙ x = B - ˙ B A = x
13 12 oveq2d φ x P A B I x A - ˙ x = B - ˙ B A - ˙ A = A - ˙ x
14 13 11 eqtrd φ x P A B I x A - ˙ x = B - ˙ B A - ˙ A = B - ˙ B
15 1 2 3 4 6 5 6 6 axtgsegcon φ x P A B I x A - ˙ x = B - ˙ B
16 14 15 r19.29a φ A - ˙ A = B - ˙ B