Step |
Hyp |
Ref |
Expression |
1 |
|
tgcgrxfr.p |
|
2 |
|
tgcgrxfr.m |
|
3 |
|
tgcgrxfr.i |
|
4 |
|
tgcgrxfr.r |
|
5 |
|
tgcgrxfr.g |
|
6 |
|
tgcgrxfr.a |
|
7 |
|
tgcgrxfr.b |
|
8 |
|
tgcgrxfr.c |
|
9 |
|
tgcgrxfr.d |
|
10 |
|
tgcgrxfr.f |
|
11 |
|
tgcgrxfr.1 |
|
12 |
|
tgcgrxfr.2 |
|
13 |
6
|
adantr |
|
14 |
5
|
adantr |
|
15 |
9
|
adantr |
|
16 |
10
|
adantr |
|
17 |
|
simpr |
|
18 |
1 2 3 14 13 15 16 17
|
tgldim0itv |
|
19 |
7
|
adantr |
|
20 |
8
|
adantr |
|
21 |
1 2 3 14 13 19 15 17 13
|
tgldim0cgr |
|
22 |
1 2 3 14 19 20 13 17 16
|
tgldim0cgr |
|
23 |
1 2 3 14 20 13 16 17 15
|
tgldim0cgr |
|
24 |
1 2 4 14 13 19 20 15 13 16 21 22 23
|
trgcgr |
|
25 |
|
eleq1 |
|
26 |
|
s3eq2 |
|
27 |
26
|
breq2d |
|
28 |
25 27
|
anbi12d |
|
29 |
28
|
rspcev |
|
30 |
13 18 24 29
|
syl12anc |
|
31 |
5
|
ad3antrrr |
|
32 |
|
simplr |
|
33 |
9
|
ad3antrrr |
|
34 |
6
|
ad3antrrr |
|
35 |
7
|
ad3antrrr |
|
36 |
1 2 3 31 32 33 34 35
|
axtgsegcon |
|
37 |
5
|
ad7antr |
|
38 |
32
|
ad2antrr |
|
39 |
38
|
ad2antrr |
|
40 |
9
|
ad7antr |
|
41 |
|
simplr |
|
42 |
41
|
ad2antrr |
|
43 |
|
simplr |
|
44 |
|
simpllr |
|
45 |
44
|
simpld |
|
46 |
|
simprl |
|
47 |
1 2 3 37 39 40 42 43 45 46
|
tgbtwnexch3 |
|
48 |
6
|
ad7antr |
|
49 |
8
|
ad7antr |
|
50 |
10
|
ad7antr |
|
51 |
|
simp-5r |
|
52 |
51
|
simprd |
|
53 |
52
|
necomd |
|
54 |
1 2 3 37 39 40 42 43 45 46
|
tgbtwnexch |
|
55 |
51
|
simpld |
|
56 |
1 2 3 37 50 40 39 55
|
tgbtwncom |
|
57 |
7
|
ad7antr |
|
58 |
11
|
ad7antr |
|
59 |
44
|
simprd |
|
60 |
|
simprr |
|
61 |
1 2 3 37 40 42 43 48 57 49 47 58 59 60
|
tgcgrextend |
|
62 |
12
|
ad7antr |
|
63 |
62
|
eqcomd |
|
64 |
1 2 3 37 40 48 49 39 43 50 53 54 56 61 63
|
tgsegconeq |
|
65 |
64
|
oveq2d |
|
66 |
47 65
|
eleqtrd |
|
67 |
59
|
eqcomd |
|
68 |
64
|
oveq2d |
|
69 |
60 68
|
eqtr3d |
|
70 |
1 2 3 5 6 8 9 10 12
|
tgcgrcomlr |
|
71 |
70
|
ad7antr |
|
72 |
1 2 4 37 48 57 49 40 42 50 67 69 71
|
trgcgr |
|
73 |
66 72
|
jca |
|
74 |
31
|
ad2antrr |
|
75 |
35
|
ad2antrr |
|
76 |
8
|
ad5antr |
|
77 |
1 2 3 74 38 41 75 76
|
axtgsegcon |
|
78 |
73 77
|
r19.29a |
|
79 |
78
|
ex |
|
80 |
79
|
reximdva |
|
81 |
36 80
|
mpd |
|
82 |
5
|
adantr |
|
83 |
10
|
adantr |
|
84 |
9
|
adantr |
|
85 |
|
simpr |
|
86 |
1 2 3 82 83 84 85
|
tgbtwndiff |
|
87 |
81 86
|
r19.29a |
|
88 |
1 6
|
tgldimor |
|
89 |
30 87 88
|
mpjaodan |
|