Step |
Hyp |
Ref |
Expression |
1 |
|
uniss |
|
2 |
1
|
adantl |
|
3 |
|
unitg |
|
4 |
3
|
adantr |
|
5 |
2 4
|
sseqtrd |
|
6 |
|
eluni2 |
|
7 |
|
ssel2 |
|
8 |
|
eltg2b |
|
9 |
|
rsp |
|
10 |
8 9
|
syl6bi |
|
11 |
10
|
imp31 |
|
12 |
11
|
an32s |
|
13 |
7 12
|
sylan2 |
|
14 |
13
|
an42s |
|
15 |
|
elssuni |
|
16 |
|
sstr2 |
|
17 |
15 16
|
syl5com |
|
18 |
17
|
anim2d |
|
19 |
18
|
reximdv |
|
20 |
19
|
ad2antrl |
|
21 |
14 20
|
mpd |
|
22 |
21
|
rexlimdvaa |
|
23 |
6 22
|
syl5bi |
|
24 |
23
|
ralrimiv |
|
25 |
5 24
|
jca |
|
26 |
25
|
ex |
|
27 |
|
eltg2 |
|
28 |
26 27
|
sylibrd |
|
29 |
28
|
alrimiv |
|
30 |
|
inss1 |
|
31 |
|
tg1 |
|
32 |
30 31
|
sstrid |
|
33 |
32
|
ad2antrl |
|
34 |
|
eltg2 |
|
35 |
34
|
simplbda |
|
36 |
|
rsp |
|
37 |
35 36
|
syl |
|
38 |
|
eltg2 |
|
39 |
38
|
simplbda |
|
40 |
|
rsp |
|
41 |
39 40
|
syl |
|
42 |
37 41
|
im2anan9 |
|
43 |
|
elin |
|
44 |
|
reeanv |
|
45 |
42 43 44
|
3imtr4g |
|
46 |
45
|
anandis |
|
47 |
|
elin |
|
48 |
47
|
biimpri |
|
49 |
|
ss2in |
|
50 |
48 49
|
anim12i |
|
51 |
50
|
an4s |
|
52 |
|
basis2 |
|
53 |
52
|
adantllr |
|
54 |
53
|
adantrrr |
|
55 |
|
sstr2 |
|
56 |
55
|
com12 |
|
57 |
56
|
anim2d |
|
58 |
57
|
reximdv |
|
59 |
58
|
adantl |
|
60 |
59
|
ad2antll |
|
61 |
54 60
|
mpd |
|
62 |
51 61
|
sylanr2 |
|
63 |
62
|
rexlimdvaa |
|
64 |
63
|
rexlimdva |
|
65 |
64
|
ex |
|
66 |
65
|
a2d |
|
67 |
66
|
imp |
|
68 |
46 67
|
syldan |
|
69 |
68
|
ralrimiv |
|
70 |
33 69
|
jca |
|
71 |
70
|
ex |
|
72 |
|
eltg2 |
|
73 |
71 72
|
sylibrd |
|
74 |
73
|
ralrimivv |
|
75 |
|
fvex |
|
76 |
|
istopg |
|
77 |
75 76
|
ax-mp |
|
78 |
29 74 77
|
sylanbrc |
|