| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniss |
|
| 2 |
1
|
adantl |
|
| 3 |
|
unitg |
|
| 4 |
3
|
adantr |
|
| 5 |
2 4
|
sseqtrd |
|
| 6 |
|
eluni2 |
|
| 7 |
|
ssel2 |
|
| 8 |
|
eltg2b |
|
| 9 |
|
rsp |
|
| 10 |
8 9
|
biimtrdi |
|
| 11 |
10
|
imp31 |
|
| 12 |
11
|
an32s |
|
| 13 |
7 12
|
sylan2 |
|
| 14 |
13
|
an42s |
|
| 15 |
|
elssuni |
|
| 16 |
|
sstr2 |
|
| 17 |
15 16
|
syl5com |
|
| 18 |
17
|
anim2d |
|
| 19 |
18
|
reximdv |
|
| 20 |
19
|
ad2antrl |
|
| 21 |
14 20
|
mpd |
|
| 22 |
21
|
rexlimdvaa |
|
| 23 |
6 22
|
biimtrid |
|
| 24 |
23
|
ralrimiv |
|
| 25 |
5 24
|
jca |
|
| 26 |
25
|
ex |
|
| 27 |
|
eltg2 |
|
| 28 |
26 27
|
sylibrd |
|
| 29 |
28
|
alrimiv |
|
| 30 |
|
inss1 |
|
| 31 |
|
tg1 |
|
| 32 |
30 31
|
sstrid |
|
| 33 |
32
|
ad2antrl |
|
| 34 |
|
eltg2 |
|
| 35 |
34
|
simplbda |
|
| 36 |
|
rsp |
|
| 37 |
35 36
|
syl |
|
| 38 |
|
eltg2 |
|
| 39 |
38
|
simplbda |
|
| 40 |
|
rsp |
|
| 41 |
39 40
|
syl |
|
| 42 |
37 41
|
im2anan9 |
|
| 43 |
|
elin |
|
| 44 |
|
reeanv |
|
| 45 |
42 43 44
|
3imtr4g |
|
| 46 |
45
|
anandis |
|
| 47 |
|
elin |
|
| 48 |
47
|
biimpri |
|
| 49 |
|
ss2in |
|
| 50 |
48 49
|
anim12i |
|
| 51 |
50
|
an4s |
|
| 52 |
|
basis2 |
|
| 53 |
52
|
adantllr |
|
| 54 |
53
|
adantrrr |
|
| 55 |
|
sstr2 |
|
| 56 |
55
|
com12 |
|
| 57 |
56
|
anim2d |
|
| 58 |
57
|
reximdv |
|
| 59 |
58
|
adantl |
|
| 60 |
59
|
ad2antll |
|
| 61 |
54 60
|
mpd |
|
| 62 |
51 61
|
sylanr2 |
|
| 63 |
62
|
rexlimdvaa |
|
| 64 |
63
|
rexlimdva |
|
| 65 |
64
|
ex |
|
| 66 |
65
|
a2d |
|
| 67 |
66
|
imp |
|
| 68 |
46 67
|
syldan |
|
| 69 |
68
|
ralrimiv |
|
| 70 |
33 69
|
jca |
|
| 71 |
70
|
ex |
|
| 72 |
|
eltg2 |
|
| 73 |
71 72
|
sylibrd |
|
| 74 |
73
|
ralrimivv |
|
| 75 |
|
fvex |
|
| 76 |
|
istopg |
|
| 77 |
75 76
|
ax-mp |
|
| 78 |
29 74 77
|
sylanbrc |
|