| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
iscmp |
|
| 3 |
2
|
simprbi |
|
| 4 |
|
unitg |
|
| 5 |
|
eqtr3 |
|
| 6 |
4 5
|
sylan |
|
| 7 |
6
|
eqeq1d |
|
| 8 |
6
|
eqeq1d |
|
| 9 |
8
|
rexbidv |
|
| 10 |
7 9
|
imbi12d |
|
| 11 |
10
|
ralbidv |
|
| 12 |
|
bastg |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
sspwd |
|
| 15 |
|
ssralv |
|
| 16 |
14 15
|
syl |
|
| 17 |
11 16
|
sylbid |
|
| 18 |
3 17
|
syl5 |
|
| 19 |
|
elpwi |
|
| 20 |
|
simprr |
|
| 21 |
|
simprl |
|
| 22 |
21
|
sselda |
|
| 23 |
22
|
adantrr |
|
| 24 |
|
simprr |
|
| 25 |
|
tg2 |
|
| 26 |
23 24 25
|
syl2anc |
|
| 27 |
26
|
expr |
|
| 28 |
27
|
reximdva |
|
| 29 |
|
eluni2 |
|
| 30 |
|
elunirab |
|
| 31 |
|
r19.42v |
|
| 32 |
31
|
rexbii |
|
| 33 |
|
rexcom |
|
| 34 |
30 32 33
|
3bitr2i |
|
| 35 |
28 29 34
|
3imtr4g |
|
| 36 |
35
|
ssrdv |
|
| 37 |
20 36
|
eqsstrd |
|
| 38 |
|
ssrab2 |
|
| 39 |
38
|
unissi |
|
| 40 |
|
simplr |
|
| 41 |
39 40
|
sseqtrrid |
|
| 42 |
37 41
|
eqssd |
|
| 43 |
|
elpw2g |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
38 44
|
mpbiri |
|
| 46 |
|
unieq |
|
| 47 |
46
|
eqeq2d |
|
| 48 |
|
pweq |
|
| 49 |
48
|
ineq1d |
|
| 50 |
49
|
rexeqdv |
|
| 51 |
47 50
|
imbi12d |
|
| 52 |
51
|
rspcv |
|
| 53 |
45 52
|
syl |
|
| 54 |
42 53
|
mpid |
|
| 55 |
|
elfpw |
|
| 56 |
55
|
simprbi |
|
| 57 |
56
|
ad2antrl |
|
| 58 |
55
|
simplbi |
|
| 59 |
58
|
ad2antrl |
|
| 60 |
|
ssrab |
|
| 61 |
60
|
simprbi |
|
| 62 |
59 61
|
syl |
|
| 63 |
|
sseq2 |
|
| 64 |
63
|
ac6sfi |
|
| 65 |
57 62 64
|
syl2anc |
|
| 66 |
|
frn |
|
| 67 |
66
|
ad2antrl |
|
| 68 |
|
ffn |
|
| 69 |
|
dffn4 |
|
| 70 |
68 69
|
sylib |
|
| 71 |
70
|
adantr |
|
| 72 |
|
fofi |
|
| 73 |
57 71 72
|
syl2an |
|
| 74 |
|
elfpw |
|
| 75 |
67 73 74
|
sylanbrc |
|
| 76 |
|
simplrr |
|
| 77 |
|
uniiun |
|
| 78 |
|
ss2iun |
|
| 79 |
77 78
|
eqsstrid |
|
| 80 |
79
|
ad2antll |
|
| 81 |
|
fniunfv |
|
| 82 |
68 81
|
syl |
|
| 83 |
82
|
ad2antrl |
|
| 84 |
80 83
|
sseqtrd |
|
| 85 |
76 84
|
eqsstrd |
|
| 86 |
67
|
unissd |
|
| 87 |
20
|
ad2antrr |
|
| 88 |
86 87
|
sseqtrrd |
|
| 89 |
85 88
|
eqssd |
|
| 90 |
|
unieq |
|
| 91 |
90
|
rspceeqv |
|
| 92 |
75 89 91
|
syl2anc |
|
| 93 |
65 92
|
exlimddv |
|
| 94 |
93
|
rexlimdvaa |
|
| 95 |
54 94
|
syld |
|
| 96 |
95
|
expr |
|
| 97 |
96
|
com23 |
|
| 98 |
19 97
|
sylan2 |
|
| 99 |
98
|
ralrimdva |
|
| 100 |
|
tgcl |
|
| 101 |
100
|
adantr |
|
| 102 |
1
|
iscmp |
|
| 103 |
102
|
baib |
|
| 104 |
101 103
|
syl |
|
| 105 |
6
|
eqeq1d |
|
| 106 |
6
|
eqeq1d |
|
| 107 |
106
|
rexbidv |
|
| 108 |
105 107
|
imbi12d |
|
| 109 |
108
|
ralbidv |
|
| 110 |
104 109
|
bitrd |
|
| 111 |
99 110
|
sylibrd |
|
| 112 |
18 111
|
impbid |
|