Metamath Proof Explorer


Theorem tgdif0

Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Assertion tgdif0 topGen B = topGen B

Proof

Step Hyp Ref Expression
1 indif1 B 𝒫 x = B 𝒫 x
2 1 unieqi B 𝒫 x = B 𝒫 x
3 unidif0 B 𝒫 x = B 𝒫 x
4 2 3 eqtri B 𝒫 x = B 𝒫 x
5 4 sseq2i x B 𝒫 x x B 𝒫 x
6 5 abbii x | x B 𝒫 x = x | x B 𝒫 x
7 difexg B V B V
8 tgval B V topGen B = x | x B 𝒫 x
9 7 8 syl B V topGen B = x | x B 𝒫 x
10 tgval B V topGen B = x | x B 𝒫 x
11 6 9 10 3eqtr4a B V topGen B = topGen B
12 difsnexi B V B V
13 fvprc ¬ B V topGen B =
14 12 13 nsyl5 ¬ B V topGen B =
15 fvprc ¬ B V topGen B =
16 14 15 eqtr4d ¬ B V topGen B = topGen B
17 11 16 pm2.61i topGen B = topGen B