Metamath Proof Explorer


Theorem tgdim01ln

Description: In geometries of dimension less than two, then any three points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019)

Ref Expression
Hypotheses tglngval.p P=BaseG
tglngval.l L=Line𝒢G
tglngval.i I=ItvG
tglngval.g φG𝒢Tarski
tglngval.x φXP
tglngval.y φYP
tgcolg.z φZP
tgdim01ln.1 φ¬GDim𝒢2
Assertion tgdim01ln φZXLYX=Y

Proof

Step Hyp Ref Expression
1 tglngval.p P=BaseG
2 tglngval.l L=Line𝒢G
3 tglngval.i I=ItvG
4 tglngval.g φG𝒢Tarski
5 tglngval.x φXP
6 tglngval.y φYP
7 tgcolg.z φZP
8 tgdim01ln.1 φ¬GDim𝒢2
9 4 adantr φZXIYG𝒢Tarski
10 5 adantr φZXIYXP
11 6 adantr φZXIYYP
12 7 adantr φZXIYZP
13 simpr φZXIYZXIY
14 1 2 3 9 10 11 12 13 btwncolg1 φZXIYZXLYX=Y
15 4 adantr φXZIYG𝒢Tarski
16 5 adantr φXZIYXP
17 6 adantr φXZIYYP
18 7 adantr φXZIYZP
19 simpr φXZIYXZIY
20 1 2 3 15 16 17 18 19 btwncolg2 φXZIYZXLYX=Y
21 4 adantr φYXIZG𝒢Tarski
22 5 adantr φYXIZXP
23 6 adantr φYXIZYP
24 7 adantr φYXIZZP
25 simpr φYXIZYXIZ
26 1 2 3 21 22 23 24 25 btwncolg3 φYXIZZXLYX=Y
27 1 3 4 8 5 6 7 tgdim01 φZXIYXZIYYXIZ
28 14 20 26 27 mpjao3dan φZXLYX=Y