Metamath Proof Explorer


Theorem tgelrnln

Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
tgelrnln.x φ X B
tgelrnln.y φ Y B
tgelrnln.d φ X Y
Assertion tgelrnln φ X L Y ran L

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 tgelrnln.x φ X B
6 tgelrnln.y φ Y B
7 tgelrnln.d φ X Y
8 df-ov X L Y = L X Y
9 1 3 2 tglnfn G 𝒢 Tarski L Fn B × B I
10 4 9 syl φ L Fn B × B I
11 5 6 opelxpd φ X Y B × B
12 df-br X I Y X Y I
13 ideqg Y B X I Y X = Y
14 12 13 bitr3id Y B X Y I X = Y
15 14 necon3bbid Y B ¬ X Y I X Y
16 15 biimpar Y B X Y ¬ X Y I
17 6 7 16 syl2anc φ ¬ X Y I
18 11 17 eldifd φ X Y B × B I
19 fnfvelrn L Fn B × B I X Y B × B I L X Y ran L
20 10 18 19 syl2anc φ L X Y ran L
21 8 20 eqeltrid φ X L Y ran L