Metamath Proof Explorer


Theorem tgfiss

Description: If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012) (Proof shortened by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion tgfiss J Top A J topGen fi A J

Proof

Step Hyp Ref Expression
1 fiss J Top A J fi A fi J
2 fitop J Top fi J = J
3 2 adantr J Top A J fi J = J
4 1 3 sseqtrd J Top A J fi A J
5 tgss J Top fi A J topGen fi A topGen J
6 4 5 syldan J Top A J topGen fi A topGen J
7 tgtop J Top topGen J = J
8 7 adantr J Top A J topGen J = J
9 6 8 sseqtrd J Top A J topGen fi A J