Metamath Proof Explorer


Theorem tghilberti1

Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
tglineelsb2.1 φ P B
tglineelsb2.2 φ Q B
tglineelsb2.4 φ P Q
Assertion tghilberti1 φ x ran L P x Q x

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 tglineelsb2.1 φ P B
6 tglineelsb2.2 φ Q B
7 tglineelsb2.4 φ P Q
8 1 2 3 4 5 6 7 tgelrnln φ P L Q ran L
9 1 2 3 4 5 6 7 tglinerflx1 φ P P L Q
10 1 2 3 4 5 6 7 tglinerflx2 φ Q P L Q
11 eleq2 x = P L Q P x P P L Q
12 eleq2 x = P L Q Q x Q P L Q
13 11 12 anbi12d x = P L Q P x Q x P P L Q Q P L Q
14 13 rspcev P L Q ran L P P L Q Q P L Q x ran L P x Q x
15 8 9 10 14 syl12anc φ x ran L P x Q x